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Abstract 

 

 This research provides program analysts and Department of Defense (DoD) leadership 

with an approach to identify problems in real-time for acquisition contracts.  Specifically, we 

develop optimization algorithms to detect unusual changes in acquisition programs’ Earned 

Value data streams.  The research is focused on three questions. First, can we predict the 

contractor provided estimate at complete (EAC)?  Second, can we use those predictions to 

develop an algorithm to determine if a problem will occur in an acquisition program or sub-

program?  Lastly, can we provide the probability of a problem occurring within a given 

timeframe?  We find three of our models establish statistical significance predicting the EAC.  

Our four-month model predicts the EAC, on average, within 3.1 percent and our five and six-

month models predict the EAC within 3.7 and 4.1 percent.  The four-month model proves to 

present the best predictions for determining the probability of a problem.  Our algorithms 

identify 70% percent of the problems within our dataset, while more than doubling the 

probability of a problem occurrence compared to current tools in the cost community.  Though 

program managers can use this information to aid analysis, the information we provide should 

serve as a tool and not a replacement for in-depth analysis of their programs.
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USING PREDICTIVE ANALYTICS TO DETECT MAJOR PROBLEMS IN DEPARTMENT 

OF DEFENSE ACQUISITION PROGRAMS 

I:  Introduction 

 

 DoD acquisitions demands qualified personnel to perform cost estimating and to track 

program performance.  To maintain the current standard of DoD acquisitions, the acquisition’s 

community must create new ways to complete the same task with fewer resources.  In 2005, in 

an effort to cut costs, the Air Force reduced cost estimating personnel force to its lowest levels 

ever (Morin, 2010).  In response to these levels, the Air Force Acquisition Improvement Plan 

sets out to re-affirm the acquisition management for the Air Force.  The Air Force is currently 

rebuilding its acquisition force; however, in the meantime, the workload for the acquisition force 

exceeds the capabilities (Morin, 2010).  The automation of tasks reduces the workload while still 

maintaining the performance that the field demands.  Automating problem detection increases 

decision maker’s awareness and decreases the likelihood of a program experiencing a cost 

overrun. 

 A prolific academic in the field of Earned Value Management (EVM) who has written 

over 20 articles, David Christensen (1992), shows that once a program exceeds the 20 percent 

completion point it cannot recover from a cost overrun.  Early problem detection enables a 

manager to prevent these overruns and increase the stability of their program.  Christensen 

(1992) also demonstrates in his research that if a contract portrays stability at the 50 percent 

completion point, it will remain stable until completion.  The DoD uses Earned Value predictions 

to track their programs and prevent program instability.  
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 Analysts currently use EVM to monitor performance of an acquisition contract.  This 

analysis requires a large amount of time and a great understanding of EVM to determine the state 

of the contract.  Analysts use various measures and ratios to develop their own estimates of 

future program costs. The analysts then compare these estimates to the estimates provided by the 

contractor to establish whether a problem might occur in their program (Headquarters Air Force 

Material Command, Financial Management, 1994).  This comparison provides EVM analysts 

with an understanding of the overall direction of their program.  

 Using EVM data to determine the quality of a program is not a new idea.  Analysts 

currently use various Earned Value techniques to evaluate their programs.  Most analysts use 

ratios or charting techniques to assess trends in their programs.  We address specific EVM 

further in our Literature Review Chapter.  Keaton (2011) first addressed the use of an automated 

algorithm to evaluate a program.  His algorithm compares various Earned Value ratios and 

relates changes in those ratios over time to significant changes in the estimate at complete 

(EAC).  Keaton (2011) shows that an automated Earned Value management tool can detect 

future problems in acquisition programs; however, he did not provide significant insight to the 

relationships between various Earned Value data.  We provide further detail regarding Keaton’s 

methods in the next chapter. 

Our Contribution 

 Analysts must synthesize all relevant information to ensure they provide decision makers 

with accurate and relevant information.  To present decision makers with the best information, 

analysts need to understand the relationships that exist within the data.  Our research not only 

provides the appropriate relationships to warrant the best information, but we also provide a 

methodology to determine those relationships within data.  
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 Our data-mining algorithm, which we use for determining Earned Value relationships, 

can be applied to any data set.  The methodology and procedures of our algorithm serves as a 

unique way to determine relationships and generate an accurate prediction model.  Our algorithm 

not only selects the best variables to use in a model, it also adjusts the variables themselves to 

make them as predictive as possible.  We address the data-mining algorithm in further detail in 

our Methodology Chapter.  The outputs and findings of our algorithm prove significant for 

analysts and decision makers. 

 The results of this research provide decision makers with a tool to forecast the EAC 

measure up to six months into the future.  We use those estimates to determine when, and with 

what likelihood, a problem will occur in an acquisition contract.  Our research builds upon the 

original research established by Keaton (2011) and improves accuracy and the breadth of the 

research.  The findings we provide facilitate a decision maker’s understanding of the programs’ 

status under his or her control.  This increase in information allows program managers the 

needed oversight to correct instability issues before their programs reach 20 percent completion.  

Our research will not replace in-depth analysis that the field requires; however, we feel that our 

results will decrease the amount of oversight required to ensure a successful program.  

 

Our research answers the following questions: 

1. Can we provide an accurate point estimate for future contractor provided EAC’s? 

2. Can we detect future major changes to the EAC?  

3. If we detect major changes to the EAC, can we provide decision makers with a timeframe 

and probability of those major changes to the EAC? 
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 Chapter two, Literature Review Chapter, provides a brief overview of the current state of 

EVM and how the DoD acquisitions community uses it to monitor programs.  The Literature 

Review Chapter presents a background of the previous research done by Keaton (2011).  The 

chapter finishes with a background on the tools we use to provide predictions of the EAC.  The 

Methodology Chapter reviews our method for determining our EAC predictions, how we detect 

problems, and how we use these detections to determine the probability of a problem occurring.  

In the Results Chapter, we present our findings.  The Conclusions Chapter reviews our results 

and discusses the implications of our findings to the Department of Defense (DoD) and presents 

ideas for future research. 
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II:  Literature Review 

 

 Cost growth plagues the DoD and leads to major budget problems.  Analysts usually 

measure cost growth as a ratio of an early final cost estimate to the current estimate or the actual 

final cost of a program (Arena, Leonard, Murray, & Younossi, 2006).  These estimates influence 

the decisions program managers make throughout the course of their project.  Managers use the 

initial estimate to formulate a budget; therefore, if the program goes over the estimate, it exceeds 

the budget as well.  Cost growth, as previously defined, proves rampant within the Air Force.  

RAND (2006) analyzed 220 completed weapon system programs from 1968 to 2003 and found a 

46 percent average cost growth among all the programs analyzed.  They also found that the 

longer duration programs had greater cost growth (Arena, Leonard, Murray, & Younossi, 2006).  

For example, the Spaced Based Infrared System currently exceeds the initial budget estimate by 

over 160% (Younossi & et al., 2007).  Project management seeks to prevent cost growth or 

provide insight to future project changes. 

 In the late 1950’s and early 1960’s almost the entire aerospace and defense industries 

used project management (Kerzner, 2009).  The DoD and construction companies started the use 

of project management techniques to enable them to track the status of their program (Kerzner, 

2009).  Managers use a variety of techniques to manage projects such as critical path analysis, 

risk monitoring and control, precedence networks, graphical evaluation and review technique, 

and many others (Kerzner 2009).  EVM, another project management technique, gives project 

managers the ability to evaluate the status of their programs.  The DoD uses EVM to track cost, 

schedule and technical performance of a contract.  EVM uses ratios and different methods to 

predict the final cost of a program as well as track the status of the program.  The Format-1 of 
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the CPR contains all the top-level EVM data we use to evaluate programs.  For example, the 

Format-1 provides the Actual Cost of Work Performed (ACWP), broken out by work breakdown 

structure (WBS) level as well as all levels combined for the whole program.  In our analysis, we 

use the combined levels that the Format-1 provides.  Reference Appendix A for an example 

Format-1.   

 Earned Value expresses the amount of work done and the work remaining in monetary 

terms.  In essence, EVM expresses a project’s completeness in terms of cost or time (Erdogmus 

2010).  According to Bosch and Küttler (2011), practitioners of EVM, “The motivation for 

introducing EVM arises because project tracking often separates schedule monitoring from cost 

analysis” (Bosch & Küttler, 2011).  Bosch & Küttlers’ EVM knowledge derives from the 

Wendelstein 7-X project. They implemented EVM tools to monitor the Wendelstein 7-X project, 

a nuclear fusion reactor.  The two found it difficult to establish a baseline schedule and break that 

schedule into definable packages.  Additionally, they found it difficult when technical changes 

arose in the project.  Overall, the two found EVM extremely versatile; although, they noted that 

managers must accompany EVM with other monitoring tools (Bosch & Küttler, 2011).  This 

example is in line with the governments beliefs about EVM as provided in The Guide to Analysis 

of Contractor Cost Data. 

 The government requires the use of a DoD established system (the Cost/Schedule Control 

System Criteria-compliant management system) for the following: procurement contracts, 

modifications in excess of $250 million, or the test and evaluation phase in excess of $60 

million.  This system indicates work progress; relate cost, schedule, and performance; provide 

valid, timely, and auditable data; and provide a summarization of the information (Headquarters 
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Air Force Material Command, Financial Management, 1994).  The system provides the 

information for the EVM analysis currently done in the acquisition community.  

 The Guide to Analysis of Contractor Cost Data provides an acquisition analyst with the 

necessary tools to evaluate CPRs and it acts as a manual for them to asses programs.  The 

manual describes the data, which the contractor provides via the Format-1 of the CPR.  Analysts 

use the cumulative ACWP, cumulative budgeted cost for work performed (BCWP), cumulative 

budgeted cost of work scheduled (BCWS), and the EAC to asses a programs performance 

(Headquarters Air Force Material Command, Financial Management, 1994).  The manual 

presents the ratios, using the data from the Format-1, to evaluate cost and schedule reporting: 

schedule performance index (SPI), cost performance index (CPI), to complete performance index 

(TCPI), percent complete, percent spent, percent scheduled, and others (Headquarters Air Force 

Material Command, Financial Management, 1994).  We address the use of these ratios further in 

the Methodology Chapter.  

 The Guide to Analysis of Contractor Cost Data further discusses ways for an analyst to 

determine if a problem exists in a program.  According to the manual,  

Thresholds are established requiring a variance analysis for any cost or schedule variance 
that exceeds a certain percentage of BCWS or BCWP and/or exceeds an established 
dollar minimum….When initially establishing the thresholds, it may be advisable to 
provide for tightening these thresholds as the contract progresses”  (Headquarters Air 
Force Material Command, Financial Management, 1994).   
 

The manual also describes ways to forecast changes to the EAC as well as ways to use ratios, 

such as CPI and SPI, to determine possible problems.  It recommends charting the ACWP, 

BCWS, and BCWP as well as the ratios, previously addressed, over the time of the project to 

visually display and analyze the changes.  By doing this, the analyst determines the overall 

performance of a project.  The government requires the program manager to define significant 
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variances and thresholds to determine when a program has a problem (Headquarters Air Force 

Material Command, Financial Management, 1994).  The manual does not tell analysts which 

method of EAC calculation provides the most accurate results, nor does it provide a numerical 

way to forecast a problem in the program.  The manual does not present a way to use changes in 

ratios or monthly data; rather, it only uses point estimates or three month averages to forecast the 

EAC.  We list all the ratios and variables the manual references in Appendix B.  Keaton (2011) 

addresses this concern with his time series analysis.  

Previous Research 

 Keaton (2011) analyzed the CPI and SPI with time series Autoregressive/Integrated/ 

Moving Average (ARIMA) models.  He showed that an analyst could model the CPI and SPI 

through a first difference model (Keaton et al., 2011).  Using a control chart to monitor the CPI 

and SPI, he detected potential problems in a program, which therefore created different bounds 

of the control chart.  He defines a problem as an absolute change in the EAC greater than five 

percent from one month to the next.  When a reported CPI or SPI fell out of the expected range, 

his algorithm demonstrated a time-lagged relationship to future problems.   

 He looked at different standard deviations for the bounds of the control chart, from 0.5 

standard deviations to 3 standard deviations, where the standard deviation updates with new 

information.  He found that the higher the standard deviation the less likely a false positive, but 

the greater likelihood for a missed detection.  In addition, he found no relationship between 

consecutive detections and the likelihood of a significant change in the EAC (Keaton et al., 

2011).  His algorithm does not provide analysts with the information of when or with what 

probability a problem will occur.  In addition, his algorithm does not forecast the magnitude or 

direction of the change in the EAC, only that a change of greater than five percent will happen 
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within a year of the detection.  We use his findings and take them a step further by forecasting 

the EAC. 

 Many different industries use forecasting and time series analysis to gain insight into 

future events.  Analysts classify forecasting problems by time: short-term, medium-term, and 

long-term.  Short-term forecasts sometimes only span a few days while log-term forecasts can 

extend beyond a few years.  To generate forecasts, researchers use past data to generate 

statistical models to predict a future event.  These forecasts usually influence the strategic 

planning of the various fields.  When analysts try to predict too far beyond the scope of the data, 

poor forecasts ensue.  For example, in 1966 the Wall Street Journal predicted, “Computers are 

multiplying at a rapid rate.  By the turn of the century there will be 220,000 in the U.S” 

(Montgomery, Jennings, & Kulahci 2008).  In actuality, 54 million households possessed at least 

one computer representing over half of all households (U.S Department of Commerce 2001).  To 

provide useable forecasts to decision makers, analysts need to possess at least background of 

basic forecasting principles. 

Forecasting 

 Quantitative forecasting enables researchers to anticipate future outcomes and apply 

probabilities to future events (Makridakis, Wheelwright, & Hyndman, 1998).  Decision makers 

only need to use forecasts for uncertain and uncontrollable events (Armstrong, 2001).  

Researchers constantly work to improve forecasting techniques and errors in forecasting 

decrease as a result.  For example, before 1987, analysts predicted 27 percent of tornados 

compared to 59 percent by 1997 (Armstrong, 2001).  All forecasting models follow a universal 

form of Equation 2.1: 

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 + 𝑒𝑟𝑟𝑜𝑟                                        (2.1) 
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Quantitative forecasting relies on two principals.  First, the past events must be quantifiable. 

Second, the researcher expects the pattern to repeat in the future or the data presents evidence 

that the pattern repeats (Makridakis, Wheelwright, & Hyndman, 1998).   

 Armstrong (2001) presents four principles to follow in his book Principles of 

Forecasting: 

1.  Use all the data possible. 

2. When developing quantitative models, researchers must make the models simple. 

3. Do not use personal judgment to revise predictions from forecasting models. 

4. Researchers should investigate theory prior to developing quantitative models.  

When analysts do not follow these principles, their models can produce poor predictions.  For 

example, prior to the energy crisis of 1970, researchers did not use all the available data to 

develop their models and the model produced results, which led to the energy crisis (Armstrong, 

2001).  In addition, no forecasting at all leads to uninformed decisions; therefore, it proves 

essential to provide decision makers with reliable insight to future events.  Researchers use many 

different methods to forecast events; in our research, we use linear regression. 

 Linear regression, commonly used as a mathematical forecasting technique, is one of the 

widely used and most common forecasting techniques.  It provides a way of relating various 

attributes, which act in a predictable manner, to a response or outcome.  Linear regression uses 

explanatory variables to forecast a response variable.  Time series analysis, through linear 

regression, uses previous responses to predict future response (Shumway & Shumway, 2000).  

Equation 2.2 represents a general form of linear regression equation (Gross, 2003). 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯+ 𝛽𝑝𝑋𝑝 + 𝜀                                           (2.2) 
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In Equation (2.2), “Y” represents the response variable with a given time unit and “𝛽𝑝” 

represents the coefficient of the explanatory variable.  The coefficient portrays the average effect 

on the response per unit increase in the “X” variable associated with the respective coefficient.  

To compare parameter estimates and establish which explanatory variables have the most impact 

on the response variable, analysts typically use standardized coefficients. 

Standardized Coefficients 

 Standardized coefficients represent the relative impact of the explanatory variable on the 

model.  Standardizing the variables requires that all variables portray a value of one standard 

deviation, which enables an even comparison between variables.  Equation 2.3 demonstrates how 

to standardize a variable. 

𝑦𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 = 𝑦𝑖−𝑦�
𝑠

                                              (2.3) 

In Equation 2.3, “𝑦𝑖” represents the individual value for the variable, “𝑦�” represents the average 

of all “y” variables, and “s” portrays the standard deviation within the variable. This equation 

turns the variables, used in the “X” matrix of a regression, into variables with the same scale.  

This allows for an equal comparison between the variables, which enables analysts to determine 

which variables influence the model the most. (Wiley, 2002).  We use standardized coefficients 

in our stepwise regression algorithm.  The standardized coefficients serve as a way to establish 

variables to remove; we go into further detail about how we remove variables from our stepwise 

regression in our Methodology Chapter. 

Stepwise Regression 

 Three types of stepwise regression exist: forward, backward and mixed stepwise 

regression.  In forward regression, the algorithm starts with no variables, and then adds one of 
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the variables to the model.  If the variable improves the model, it stays in the model.  Contrarily, 

if the variable fails to improve the model, the algorithm does not include it.  All three stepwise 

regressions use a t-test to determine significance.  For a forward regression, the analyst sets the 

significance levels to determine if a variable improves the model (Bart, Flinger, & Notz, 1999).  

This process repeats until the algorithm tests every variable.  Backward stepwise regression 

works the opposite of forward regression.  The backward stepwise regression enters all the 

variables into the model and removes the variable with the greatest p-value until all the variables 

in the model meet the analyst’s p-value requirements.  The algorithm repeats this process until all 

the variables’ p-values meet the minimum cut-off p-value.  In mixed, also referred to as full 

stepwise, the stepwise algorithm alternates between adding and removing variables.  The mixed 

stepwise algorithm will add in variables removed earlier and test their significance (Bart, Flinger, 

& Notz, 1999).   Each of the three stepwise techniques presents different advantages and 

disadvantages.   

 Backward stepwise regression presents advantages over forward regression, “backward-

deletion variations is often preferable to the forward-selection variation because of its ability to 

deal with suppressor effects, which occur when a predictor has a significant effect but only when 

another variable is held constant” (Andrew, Pedersen, & McEvory, 2011).  Backward stepwise 

regression requires more computational power than forward regression but less than the mixed 

regression (Bart, Flinger, & Notz, 1999).  When analysts require more exploratory research, 

stepwise regression can determine the significance of new relationships (Andrew, Pedersen, & 

McEvory, 2011).  For our analysis, we use time series data within our own backward stepwise 

regression. 
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Time Series Analysis 

 An analyst must first perform preliminary work prior to making a time series model.  The 

analyst must think about the following prior to model building: 

1. Ask the right questions to get background information 

2. Determine clear objectives to produce the forecast 

3. Establish exactly how the forecast will be used  

4. What variables should be included/excluded (Chatfield, 2000)? 

Analysts must also avoid unfairly improving a model by: 

1. Using the validation data while making the model 

2. Fitting multiple models to the test set and choosing the best results 

3. Using variables that contain data from the time period of the prediction (Chatfield, 

2000). 

The success of time series models depend upon identifying the underlying trends and the 

relationships of the inputs (Peterson & Pi, 1994).  The integration of Chatfield’s (2000) 

procedures enables an analyst to study the dependency between the response variable and the 

prediction variables.  To incorporate time series data into the linear regression in Equation 2.2 an 

analyst replaces the “X” variables with previous “Y” variables shown in Equation 2.4. 

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + ⋯+ 𝛽𝑖𝑌(𝑡−𝑖) + 𝜀                                     (2.4) 

The “𝛽” parameters in Equation 2.3 represent the average impact on the predicted time period 

for the corresponding “𝑌𝑡−𝑖”.  In a time series analysis, the predictive variables can take on 

different values other than previous “Y” values; however, all the variables must only include 

previous data.  For example, in a time series model a researcher might use the standard deviation 
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of the “Y” values from four periods ago to the last period.  Time series assumes a relationship 

exists between previous data and future data.  

 When researchers extrapolate beyond the data, they run the risk that their model will act 

differently in the future (Montgomery, Peck & Vining, 2011).  Therefore, researchers must build 

the most accurate model to ensure viable future predictions.  In order to build the most accurate 

model, a researcher must determine the global and local minimums of the error term.  Cutting the 

Plane and the Simplex Method are two widely used linear programming techniques to solve 

complex problems and develop the most accurate models.  Many businesses, in numerous fields, 

use linear programming to solve complex problems.  A survey of Fortune 500 companies found 

that 85% of respondents use linear programming in their businesses (Harshbarger & Reynolds, 

2008).  These linear programming techniques improve the accuracy and the value of the 

forecasts. 

Cutting the Plane 

 The Cutting the Plane method is a tool used to solve convex optimization problems.  

Convex optimization problems present themselves when no analytic solution exists.  The surface 

of a convex optimization problem can take on both convex and concave or just a concave shape.  

Many different solutions exist in a convex optimization problem (Boyd & Vandenberghe, 2004).  

The cutting plane algorithm seeks to determine the global minimum or maximum.  Different 

cutting plane methods exist.  Ralph Gomory (1960), a recognized American mathematician, 

developed a method referred to as the fractional method.  In the fractional method, the term an 

analyst optimizes changes through equal fractional cuts to determine the lowest or highest value, 

which the analyst optimizes.  The fractional cutting method ensures that the analyst determines 

the true optimal solution; however, to ensure this convergence, the method requires a large 
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number of cuts (Batson, Chen, & Dang, 2010).  Analysts use the Cutting the Plane method in 

such fields as integer programming and linear programming.   

 Analysts use these algorithms to solve two common optimization problems, the traveling 

salesman problem and the linear ordering problem (Floudas, 2001).  According to Gutin and 

Punnen, “The traveling salesman problem is to find a shortest route of a traveling salesperson 

that starts at a home city, visits a prescribed set of other cities and returns to the starting city” 

(Gutin & Punnen, 2002).  Mitchell and Borchers (1998) describe a real world example of the 

linear ordering problem. 

As an example of the aggregation of individual preferences, consider a tournament 
between a number of sports teams, where each team plays every other team. We wish to 
determine which team is the best, which is second best, and so on. If Team A beats Team 
B then Team A should finish ahead of Team B in the final ordering. However, it may be 
that Team B beat Team C, who in turn beat Team A. Therefore, it is not generally a 
simple matter to determine the final ordering. We could just count the number of 
victories of each team, but this may not truly represent the relative strength of some 
teams, and it may well lead to ties in the ordering. Therefore, we usually take the margin 
of victory into account when determining the final ordering (Mitchell & Borchers, 2000). 
 

We go into further detail as to how we implement the Cutting the Plane method in our 

Methodology Chapter of this paper.  After using a method for determining the approximate 

location of the global minimum or maximum, we use a modification of the Simplex Method to 

determine the local minimum.  We assume the local minimum equals the global minimum since 

the local minimum resides near the approximate location of the global minimum, which we 

derive from the Cutting the Plane algorithm.   

Simplex Method 

 The Simplex Method is a tool for finding the local minimum or maximum.  The method 

adapts itself to the local landscape in order to find the minimum or maximum.  The method does 

not rely on derivatives or advanced math and is computationally compact.  The method only 
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requires that the surface present a continuous function. (Mead & Nelder, 1965).  Nelder and 

Mead define the function value, 𝑦𝑖, for the minimization of a function at 𝑃0,𝑃1 …𝑃𝑛 points in n-

dimensional space, which defines the “simplex”.   Equation 2.5 represents the general form of 

the equation: 

𝑃∗ = (1+∝)𝑃�−∝ 𝑃ℎ                                                     (2.5) 

Nelder and Mead describe the Simplex process, 
 

Where “∝” is a positive constant, the reflection coefficient.  Thus 𝑃∗is on the line  joining 
𝑃ℎ and 𝑃�, on the far side of 𝑃� from 𝑃ℎ with [𝑃∗𝑃�].  If 𝑌∗ lies between 𝑦ℎ and 𝑦𝑖,  then 
𝑃ℎis replaced by 𝑃∗ and we start again with the new simplex.  If 𝑦∗ > 𝑦𝑖, i.e. if reflection 
has produced a new minimum, then we expand 𝑃∗ to 𝑃∗∗ by the relation 𝑃∗∗ = 𝛾𝑃∗ +
(1 − 𝛾)𝑃�. The expansion coefficient 𝛾, which is greater than unity, is the ratio of the 
distance [𝑃∗∗𝑃�] to [𝑃𝑃�].  We then accept 𝑃∗∗ for the 𝑃ℎ and restart (Mead & Nelder 
1965).   

 

After the algorithm finishes, the “P” value represents the local minimum for the function (“Y”).  

Harshbarger and Reynolds describe the method in simple terms, “This method gives a systematic 

way of moving from one feasible corner of the convex region to another in such a way that the 

value of the objective function increases until an optimal value is reached or it discovered that no 

solution exists” (Harshbarger & Reynolds, 2008).  Analysts first used the Simplex Method when 

dealing with scheduling problems that arose from the 1948 Berlin airlift.  The analyst maximized 

the amount of goods delivered with various constraints.  Since then, analysts use the Simplex 

Method to solve many different optimization problems across a large variety of businesses 

(Harshbarger & Reynolds, 2008).  We provide further detail for the use and simplification of the 

Simplex Method in the Methodology Chapter.   

 In the next chapter, we detail how we collect our data, its limitations, and its breakout.  

We explain how we separate our data, which enables us to validate our results.  Subsequently, 

we review the procedures we use to determine the optimum models to predict the contractor 



 

17 
 

provided EAC.  We provide an in-depth review of the process we use to establish our variables 

and the parameter estimates that go along with those variables.  After describing our algorithm, 

we detail the steps we take to use our model outputs to generate probabilities of a problem 

occurrence.  Finally, we conclude the chapter with our procedures for establishing the validity of 

our results. 
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III:  Methodology 

 

 This chapter details our procedures for using Earned Value data to forecast potential 

problems in acquisition programs.  We first describe our data set, its limitations, the measures we 

extract from it, and how we standardize the data prior to developing our model.  Then, we 

explain our optimization techniques: Cutting the Plane, the modified Simplex Method, and 

Ordinary Least Squares (OLS), into our model building process to ensure we select the most 

predictive explanatory variables.  We then discuss how we use our model outputs from our four 

to six-month predictive models to forecast the contractor EAC, and how we use those forecasts 

to generate a control chart that predicts the likelihood of a problem occurrence.  We define a 

problem as an absolute five percent change in the EAC, the same as Keaton (2011).  We finish 

this section with a review of how we validate our models and control chart. 

Data Source 

 We obtain all our data from the Defense Cost and Resource Center (DCARC).  This 

database stores the acquisition contract information for major acquisition programs.  We use the 

CPRs provided by the contractor to obtain our data.  These CPRs come in many formats: 

Portable Document Files (PDF), Hyper Text Markup Language (HTML), Excel, and Extensible 

Markup Language (XML).  We only analyze at the PDF, HTML and Excel files.  We do not use 

XML files because we do not possess the unique program the contractors use to create them and 

therefore cannot extract the data. 

 We initially search DCARC to obtain possible acquisition category 1D (ACAT ID) 

programs to collect.  We limit ourselves to using ACAT ID programs because these programs 

contain the most oversight and cost the most money, which, in turn, cause the greatest 
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consequences when a major problem occurs.  We use all the DCARC data except when the 

program contains less than 10 consecutive months of data or we encounter unreadable data.  We 

find 37 unique usable programs or sub-programs containing 1304 months of data; Appendix C 

lists the data by program.  Table 3.1 contains all possible DCARC data.  The “All Programs” row 

of the table refers to the programs within DCARC that contain CPR data and the “ACAT ID” 

row refers to how many of the total programs are ACAT ID.  The “useable” row represents how 

many programs contain enough data, in the right format, and do not contain major data gaps of 

the ACAT ID programs.  Our data covers programs from all the services and spans different 

types of programs with dates ranging from September 2007 to August 2011.  Refer to Table 3.2 

for the breakout of programs by service type and Table 3.3 for a breakout by type of program. 

Table 3.1: Data Available in DCARC 
 

Category 
Number of 
Programs 

All 
Programs 118 
ACAT ID 64 
Useable 37 

 
Table 3.2: Number of Programs by Service Type 

 
Service Number of Programs 

AF 14 

Navy 8 

Army 7 

Joint 7 

Marine 1 
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Table 3.3: Number of Programs by Type of Program 
 

Type  Number of Programs  

Plane 10 

Comm. 9 

Satellite 5 

Missile 3 

Helicopter 3 

Radar 2 

Ship 2 

Facility 2 

Vehicle 1 

 
 To ensure the accuracy of our models, we create a validation set of data, before starting 

our analysis.  We use a 20 percent stratified random sample from our original data set.  We 

ensure that 20 percent of the data comes from “small” programs, less than 30 months of data, 

“medium” programs, between 30 and 40 months of data, and “large” programs, more than 40 

months of data.  For instance, if we have 10 small programs we ensure we use two of those 

programs for the validation set.  We use Excel’s® random number generator to choose which 

programs we use in our validation set.  We use eight programs for validation containing 276 

months of data.  This represents 21.6 percent of the programs and 21.0 percent of the months of 

total data. Table 3.4 depicts the programs size and if we use them for analysis or validation.    

Reference Appendix C for a complete breakout of our validation set. 
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Table 3.4: Programs by Months of Data 
 

  

Small Programs 
(Less than 30 

Months of Data) 

Medium Programs 
(30-40 Months of 

Data) 

Large Programs 
(More than 40 

Months of Data) 
Number of Programs 
(Analysis) 

9 7 13 

Number of Programs 
(Validation) 

2 3 3 

 
 Data Limitations 

 Our data faces four unique limitations.  An explanation of how we addressed each 

limitation is provided.  We provide an explanation of how we address each limitation.  Currently, 

DCARC is the only database that provides complete CPR Format-1 data.  Therefore, our first 

limitation is that we only collect data from one source; however, DCARC compiles data from 

multiple contractors and multiple sources so it only appears that we have one source of data.  For 

our second limitation, we come across one-month gaps within a program, where DCARC does 

not provide data.  Ten one-month gaps exist in our data set, which accounts for less than one 

percent of the data.  To address this limitation, we use a linear approximation to fill the hole in 

the data.  For example, if DCARC does not provide CPR data for February 2010, but DCARC 

presents CPR data for January and March of 2010, to determine the value of February of 2010 

we use the average of January and March 2010.  For instance, if January presents an ACWP of 

1000 dollars and March presents an ACWP of 1200 we use 1100 dollars for February’s ACWP.  

We repeat this procedure for all the data we use in our algorithm, which we discuss in further 

detail later in this chapter.  A linear approximation will reduce the variability.  Major gaps in our 

data, larger than one month, present our third limitation; if DCARC does not provide more than 

one month of consecutive data, we stop analyzing the program.  For example, if a program has 

consecutive data from January of 2008 to May 2010 and data from August 2010 to February 
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2011, we exclude the data from August 2010 to February 2011.  Sometimes the data DCARC 

provides does not cover the entire program.  Meaning DCARC might only provide the first 40 

consecutive months of data when the actual program lasted 50 months.  Our final limitation deals 

with the limited variance within our response value. 

 If we use less than a four-month prediction, the response values, the ratio of the EAC’s 

(refer to Equation 3.1), do not provide enough variation to determine statistically sound 

parameter estimates.  Meaning, our parameter estimates will depend on only a few months of 

data.  Therefore, the data forces us to predict no less than four months out.   

EAC4−6 Months ahead
EACCurrent Month

                                                           3.1 

For instance, if we only predict one month out, the data only presents the change for one datum; 

however, if we predict four months into the future, the data presents us with four opportunities to 

detect the pattern that relates the change.  For example, if we predict four months into the future 

and a major change occurs in month nine, our response variable has months five through eight to 

detect that pattern relating to the change; contrarily, a one-month prediction would only have 

month eight to detect the pattern. Essentially, the more opportunities to predict a change in the 

EAC, the better the chance there is for us to determine the pattern within the data.  In addition, 

our data contains 67 instances where the contractor provided EAC changes by greater than an 

absolute five percent, (our definition of a problem), from one month to the next.  We lose 12 of 

the 67 instances because they occur in the beginning of program, which resides outside the 

prediction window of our models. 

Response and Explanatory variables 

 As previously discussed, we obtain all of our data from DCARC for our analysis.  We 

specifically use the Format-1 data from the CPRs that the contractor provides to DCARC.  The 
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Format-1 data consists of Earned Value data for the current period, cumulative, and at complete 

values for each WBS element.  Since we provide predictions and problem detections at the 

overall program level, we use top-level WBS data.  Top-level refers to using the summation of 

all the different WBS levels for each component.  For example, we sum all the different WBS 

BCWP components to get the top-level BCWP.  From the Format-1, we collect the following 

earned value data: contractor provided EAC (best, worst, and most likely), cumulative BCWP, 

cumulative BCWS, and cumulative ACWP. 

 For our response variable (𝑦), we use a ratio of the most likely EAC, reference Equation 

3.1.  Our model uses three different ratios of four, five, or six month out predictions.  For our 

explanatory variables (𝑥′𝑠), we use ratios; which we derive from the cumulative BCWP, 

cumulative BCWS, and cumulative ACWP.  Refer to Appendix B for definitions if needed.  

These ratios, for both the response variable and the explanatory variables, standardize the 

variables between our different programs, which enables us to compare multiple programs at the 

same time. 

 We initially create 148 variables to consider, shown in Appendix D.  To address the large 

magnitude of variables, we perform an initial screening to reduce the number of explanatory 

variables to a useable number.  To reduce the number, we perform a regression analysis between 

the most likely EAC and the explanatory variables, only using those variables with a p-value less 

than 0.1 (our significance level).  This procedure reduces the number of explanatory variables to 

30 variables.  Appendix E contains a breakout of our 30 variables and the equations we use to 

derive them.  Later in this chapter, we go into more detail regarding our initial screening process 

along with how we arrive at our final explanatory variables for their respective models. 
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Overall Algorithm Flow 

 To provide a better understanding of our algorithm, reference Appendix F for the Visual 

Basic code, we outline its flow: 

I. Initial Screening – Use a mixed stepwise regression to reduce the number of variables 

from 148 to 30.  We perform this procedure one time prior to starting the algorithm. 

II. Reduce the Number of Significant Variables from 30 to 12, including the intercept (to 

keep the model simple).  The algorithm performs the steps within this procedure until 

the variables meet the significance level and quantity.   

a. Optimize the Variables 

i. Cutting the Plane  (using OLS) 

ii. Modified Simplex (using OLS) 

b. Remove a Variable 

i.  Determine if all the variables meet the required significance level. 

1. If the variables all meet the required significance, remove the 

variable with the least impact to the model. 

2. If the variables do not meet the required significance level, 

remove the variable with the least impact to the model and one 

that does not meet the significance level.  

c. Check Variable Quantity 

i. If all variables are significant and there are less than 12 variables, 

move to section III. 

ii. If there are more than 12 variables or some of the variables are not 

significant, go to section II. 

III. Determine the Optimum Order to Optimize Threshold Variables 
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IV. Using the 12 or less Variables, Minimize the MAPE  

V. Using Forecasts from Section IV, Generate Control Chart Bounds 

VI. Validate 

a. Forecasts from section IV 

b. Predictions from Control Chart, section V 

Variable Selection 

 We use a standard OLS model previously listed in the literature review section (Equation 

2.2) to determine our variables and their thresholds.  Before we begin our backward stepwise 

regression, we reduce the possible variables to 30 in order to make the data manageable.  To 

reduce the variables we use a mixed stepwise regression, explained in the Literature Review 

Chapter, with an exclusion criterion p-value of 0.1 for the variables.  After we prepare our 

variables for analysis, we obtain our parameter estimates, by minimizing the sum of squared 

error (SSE).  We use both static and dynamic variables in our model.  SPI presents a good 

example of a static variable since it does not change because the components that makeup the 

equation do not change, while dynamic variables in our model change based upon a given input.  

For example, one of our variables, Large CPI, presents a value of one if the CPI presents a value 

larger than some threshold and a zero otherwise, (reference Equation 3.2). 

𝐶𝑃𝐼 𝐿𝑎𝑟𝑔𝑒 = �1 𝑖𝑓 𝐶𝑃𝐼 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�                                               3.2 

Appendix E lists which of our variables use thresholds and which do not.   

 To determine thresholds in our analysis, we use the Cutting the Plane method and a 

variation of the Simplex Method, both previously described in the Literature Review Chapter.  

We use these two methods, in conjunction with one another to determine significance thresholds, 
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to optimize the function itself.  We then remove variables to meet our conditions concerning 

variable significance and quantity.  For our analysis, we ensure that the overall p-value displays a 

value less than 0.005, where the null hypothesis states that no difference exists between zero and 

the population parameter.  We use a lower than generally acceptable, 0.05, value to ensure our 

variables significance, even if we fail to meet all the OLS assumptions.  We limit the number of 

variables we use in our model to 12, including the intercept, or less to keep our model simple.  

We address this later in the section in the variable removal portion.   

 Once the model meets the significance and variable quantity conditions, we optimize the 

parameter estimates by minimizing the mean absolute percent error (MAPE).  Optimizing with 

MAPE instead of SSE ensures even weighting of each individual month of data.  Due to 

computational difficulties, we do not use the MAPE to determine variable thresholds and 

selection.  To minimize MAPE, a non-linear function, we use Excel’s SOLVER, which 

converges on the solution through maximum likelihood estimators (Rachev, 2007).  Using the 

maximum likelihood estimators requires significantly greater processing power than minimizing 

the SSE, minimized through a linear process, which forces us to use the SSE as our loss function 

for determining variables and their thresholds. 

Cutting the Plane 

 We use the Cutting the Plane method, previously described in the Literature Review 

Chapter, to determine the approximate location of the global minimum of the variable’s function 

in which we optimize.  For example, using “Large CPI,” defined by Equation 3.2, we determine 

the approximate “threshold” that minimizes the SSE.  To determine this threshold, we first apply 

a range of possible solutions for the function to ensure we do not overweight a few months of 

data.  For example, the threshold for the CPI function takes on any number between one and 
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1.15.  We then divide the range into 20 equal cuts and determine the SSE for each value.  For 

instance, using the “Large CPI” range, we test 1, 1.0075, 1.015, 1.025…1.15 and determine the 

SSE for each threshold.  Figure 3.1 displays a visual representation of the Cutting the Plane 

algorithm.  We consider the value that displays the lowest SSE the approximate location to the 

global minimum for that variable and the starting point for the modified Simplex Method. 

Simplex Method 

 After the algorithm determines the approximate global minimums, we use a variation of 

the Simplex Method to determine the local minimum.  As we previously stated in the Literature 

Review Chapter, we assume the local minimum equals the global minimum because the starting 

point for the Simplex Method resides near the global minimum.  In our version of the Simplex 

Method, we use the percent change in SSE to determine whether the algorithm continues or stops 

at the given solution. 

 

Figure 3.1: Cutting the Plane Example 

Figures 3.2, 3.3, and 3.4 outline our process to determine the local minimum.  
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Figure 3.2: Modified Simplex Method Initial Procedure 
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Figure 3.3: Modified Simplex Method Test SSE<Previous SSE   
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Figure 3.4: Modified Simplex Method Test SSE>Previous SSE
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 The starting SSE equals the lowest SSE from the Cutting the Plane algorithm.  To 

determine the magnitude from the starting point, we divide the range, as described in the Cutting 

the Plane section, by 40.  This represents half the distance between the cuts from the Cutting the 

Plane method.  For example, on the “CPI Large” variable our range portrays a value of 0.15; 

therefore, 0.00375 represents half the value of the distance between the cuts.  We determine if 

we increase or decrease the starting point by comparing the SSE of a positive change and 

negative change from the starting point.  For example, if the lowest SSE, from the Cutting the 

Plane method, displays a value of 1.04, then 1.04375 and 1.03625 correspond to the two test 

points to determine the initial move direction.  The algorithm will continue to change the 

previous point by the change, same magnitude and direction, until the previous point’s SSE 

generates a lower SSE than the current point’s SSE.  For example, if 1.04375 displays a lower 

SSE than 1.03625 and the starting point (1.04), then the algorithm would then test 1.0479 

(1.4375 + 0.00375).  This process will continue until the SSE increases.  When this happens, the 

change decreases in magnitude by half and changes in direction from positive to negative or 

negative to positive.  For example, if 1.0479 portrays a SSE larger than 1.04375, then the 

algorithm will test 1.046025 (1.0479- 0.00375
2

 ).  This process of changing magnitude and 

direction continues until the percent change in SSE exhibits a value less than the exit criterion.  

 For our algorithm, we use an exit criterion of 1 ∗ 10−6.  After the algorithm meets the 

exit criterion, it compares the starting SSE to the final test SSE.  If the final test SSE portrays a 

value less than the starting SSE, then the final test point becomes the optimum threshold for the 

function the algorithm optimizes.  However, if the starting SSE depicts a value less than the final 

test SSE, then the starting point becomes the optimum threshold for the function.  
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Variable Removal 

 After the algorithm runs the Cutting the Plane and the modified Simplex Method for all 

function variables, the algorithm then determines if current model meets specifications.  The 

algorithm checks to ensure that all the variables meet the requirements for both the p-value of 

each variable and the total number of variables.  If the current model fails to meet the two 

requirements, the algorithm removes one variable.  The algorithm uses two different methods to 

remove variables, one coupled with variables not meeting the p-value threshold and the other 

with having more than 12 total variables, all of which meet the p-value threshold.   

 To determine which variables the algorithm considers for removal, we use the Bonferroni 

Method to determine the p-value threshold for each individual variable.  To determine the 

threshold, we divide 0.005 by the total number of variables currently in the algorithm (Neter et 

al., 1996).  When one or more variables portray a failing p-value, greater than 0.005 divided by 

the total number of variables, the algorithm only considers removing those variables with failing 

p-values.  The algorithm removes the variable with the least impact to the model.  The algorithm 

uses the standardized Beta coefficient, previously described in the Literature Review Chapter, to 

determine the variables impact on the model. The algorithm sorts variables, only those with 

failing p-values, by the absolute standardized coefficient.  The algorithm then selects the smallest 

standardized coefficient, of the variables with failing p-values, and removes the variable. 

 If all the variables show passing p-values, but the model contains more variables than 12 

variables, then the algorithm must remove a variable.  The algorithm will then sort all of the 

variables by their respective absolute standardized coefficient.  After the sorting, the algorithm 

selects the smallest absolute standardized coefficient and removes the variable associated with it. 

 After the algorithm removes a variable, the algorithm re-runs the Cutting the Plane 
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algorithm and then the Simplex Method to re-optimize the thresholds for the variables, since 

removing variables could change the optimum thresholds.  The algorithm will stop removing 

variables and optimizing when the model contains 12 or less variables, including the intercept, 

where each variable portrays a passing p-value, excluding the intercept.  Once the algorithm 

meets the requirements, the algorithm determines the optimum order to run the Cutting the Plane 

algorithm and the Simplex Method.  To determine the order, the algorithm runs through all 

permutations of the order of the variables the algorithm optimizes to determine the lowest 

possible SSE. 

 Determine Optimum Optimization Order 

 Once the algorithm selects the best combination of variables, it must determine the order 

to optimize the thresholds associated with those variables.  The algorithm does not change the 

optimization order until after it selects the variables because of computational limitations.  For 

example, in our analysis we use 24 (some variables contain more than one threshold) different 

thresholds for different variables.  To determine the optimum order for those 24 variables, the 

algorithm runs the optimization procedures 6.2 × 1023 times.  However, when six thresholds 

exists the algorithm.  It only needs to run the procedures 720 times.  To determine the optimum 

order, the algorithm runs the Cutting the Plane and Simplex Method multiple times where a new 

variable is optimized first each time.  To determine the variable that the algorithm optimizes 

first, it compares the SSE at the end of each run.  The algorithm then locks the variable 

displaying the lowest SSE in the first position.  After determining the first position, the algorithm 

uses the same procedure to determine the remaining positions.  Once the algorithm sets the order, 

it determines the variables’ thresholds and determines the final parameter estimates for each 

variable. 
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Minimizing the MAPE 

 Finally, after the algorithm determines the thresholds and the significant variables, we 

generate the optimum coefficients by minimizing the MAPE.  Using the MAPE as the loss 

function instead of the SSE ensures we do not over-weight a few data points compared to 

minimizing the SSE.  Squaring the error term, when minimizing the SSE, is the cause for the 

over-weighting; however, when minimizing the MAPE the model does not square the error term, 

which leads to weighting all error equally.   Minimizing the MAPE, after using the SSE for 

variable selection, could affect the variables significance.  To ensure the accuracy of the data set 

used for analysis, we compare the accuracy of the model to the validation data set; we address 

this in further detail later in this chapter.  After establishing our optimum coefficients, we use the 

model outputs to produce probabilities of problem occurrence.   

Generating Control Chart Bounds 

 We run the algorithm to predict the EAC ratio for four, five, and six months into the 

future.  We use these outputs to generate control charts.  If a prediction from the model falls 

outside the bounds of the control chart, we consider this an indicator that a problem will occur 

within a given time period.  We generate a control chart with two bounds, an upper bound and a 

lower bound.  If a problem occurs within six months of detection, we identify that individual 

problem; however, if no detections occur within six months of a problem, we do not detect that 

problem.   

 To determine the bounds of the control chart, we optimize the percent of total problems 

the control chart detects while ensuring less than 30 percent of our predictions fall outside the 

control chart bounds.  For example, if 50 potential problems exist in our four-month predictions, 

and we detect 30 of the 50 problems within six months of occurrence, while detecting less than 
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30 percent of the time, our optimization function displays a value of 0.6.  We maximize this 

function by changing the upper and lower bounds of the control charts.  The model that produces 

the highest optimization function and performs well with the validation data set we establish as 

our model for problem detection. 

 To optimize the percent of problems we detect, we change the control chart bounds.  We 

use a complete grid search of every possible combination of control chart bounds to establish the 

optimum bounds.  We compare the optimization function, as previously defined, of each 

different set of control chart bounds and select the bounds that produce the greatest value of the 

function.  To perform the grid search, we use Crystal Ball® and set the upper and lower control 

chart bounds to uniform random variables.  We set the upper control chart bound to a random 

number between zero and fifteen percent EAC growth from current month to the predicted 

month, we set the lower control chart bound to a random number between zero, and 10 percent 

EAC decrease.  For example, on one trial, the bounds could display values of five percent growth 

and four percent decrease.  With those bounds, any prediction where the EAC prediction 

increases greater than five percent or the EAC prediction decreases greater than four percent we 

deem it a detection.  In that same scenario, any prediction of less than five percent EAC growth 

and four percent EAC decrease, we deem a non-detection.  After each trial, we report the 

optimization function and after we run more than one million trials, we obtain the complete grid 

of possible combinations of control chart bounds.  We do this procedure for our four through six-

month model predictions and compare the aforementioned optimization function between the 

different control charts.  We select the model prediction that detects the greatest percent of 

problems and use those predictions to determine probability of a problem occurrence. 

 After determining which model predictions we use, we make six different control charts, 
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with the bounds established from the optimization, to determine the probability a problem exists 

one through six months into the future.  For example, if 10 predictions occur outside the control 

chart bounds and eight problems transpire within five months of those predictions, then the 

model states an 80 percent chance of a problem occurring within five months of a prediction 

falling outside the control chart bounds.  We use these same procedures to establish probabilities 

of a problem occurrence one to six-months from a detection.  

Validation 

 We use our validation set to test two things.  First, we determine whether the point 

estimates provided by our three models prove statistically significant. Second, we test to ensure 

our bounds for the control chart demonstrate statistical significance.  To ensure the point 

estimate’s validity, we use a difference of means t-test, not assuming equal variances or 

population size, and determine the confidence level for the MAPE.  We perform a one-tailed t-

test where the null hypothesis states that the analysis data set’s MAPE is greater than the MAPE 

of the validation’s data set.  We perform a one-tailed test because we only care if the MAPE 

increases for the validation set.  If the p-value, for the difference of means test, demonstrates a 

value less than 0.1, we consider it a significant statistical difference between the means.  

Therefore, to pronounce no statistical difference between our validation set and the data we use 

to create our models, the p-values must be greater than 0.1.  For the control chart, we perform a 

one-tailed difference of proportions z-test for the percent of time our control chart produces a 

correct detection or non-detection for the six-month estimate.  We define a correct prediction as a 

non-detection when no problem occurs within six-months or a detection when a problem occurs 

within six-months.  We test the null hypothesis that the proportion of correct predictions to total 

predictions for the analysis data set is less than the proportion of correct predictions to total 
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predictions for the validation data set.  We use the same p-value thresholds for the difference of 

proportion test as we do for the difference of means test.  After we ensure our data’s validity, we 

compare our results to the current community’s standard. 

 To determine the usefulness of our results to the acquisitions community, we compare 

our findings to a typical detection method.  We use Keaton’s (2011) detection algorithm and 

compare detection rates and accuracy rates.  We feel Keaton’s detection algorithm is 

representative of the typical tools an EVM expert uses in the field.  If our results improve upon 

his and they pass the validation tests, we deem our findings both valid and useful.  In the next 

chapter, Results Chapter, we assess our results from our EAC predictions, control charts, and the 

validation tests.    
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IV:  Results 

 

 This chapter provides the results of the three forecasting models as well as our control 

chart for problem detection.  We present the three formulas we use to make our EAC predictions 

for four, five and six months into the future.  We address the accuracy and the shortfalls of our 

forecasts as well as our problem detection using the control chart. 

 The data is comprised of 67 months with absolute changes in the EAC from one month to 

the next greater than five percent.  Nine of the changes, or problems, occur in our validation data.  

For the four-month control chart, seven of the 58 problems fall outside our eligible prediction 

window, nine and 11 for the five and six month control charts.  We lose possible problems to 

detect because we do not use the first two months of data; additionally, we lose one month of 

data, within each program, for every extra month we predict.  For example, our five-month 

prediction model contains 29 less months of data than our four-month prediction model since we 

use 29 programs in our analysis data set.   Our four-month control chart detects 70 percent of the 

problems, the five-month control chart detects 73 percent of the problems, and the six-month 

control chart detects 74 percent of the problems.  We address later in the chapter why we 

recommend using the four-month predictions for the control chart in lieu of not producing the 

optimal percent of problems detected. 

Model Predictions  

 To reduce the complexity of our models, we limit the number of variables we use to 

predict the EAC.  In our five and six-month models, the algorithm selected 11 variables, while 

the algorithm selected 10 variables for the four-month model.  Reference Tables 4.1, 4.2, and 4.3 

for a list of our equations and the results of the models we use to predict the EACs.  Refer to 
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Appendix E for a description of the variables. 

 Our models predict the ratio of either the four, fifth, or sixth month divided by the current 

month EAC.  To determine the point estimate of the fourth, fifth or sixth month EAC the analyst 

multiplies the ratio by the current month’s EAC.  For example, if the five-month model outputs a 

ratio of 1.0421 and the contractor reports an EAC of 143,000, then the model predicts a point 

estimate of 149,020.3.  These estimates prove significant because of the results of statistical tests, 

shown in Tables 4.2, 4.3, 4.4. 

 Our three models we use to forecast the future EAC all pass validation.  Table 4.1 

displays the p-values associated with the difference of means test we perform, which we describe 

in the Methodology Chapter.  All of the MAPE values for the validation set prove more accurate 

than the data we use to determine our variables.  Refer to Table 4.1 for the results of the 

difference of means tests as well as the respective MAPE’s for our models. 

Table 4.1: Results of Prediction Models 
 

  4-Month 5-Month 6-Month 
P-Value 0.787 0.201 0.888 
MAPEanalysis  3.135 3.675 4.080 
MAPEvalidation 2.695 3.551 3.442 
Sample Sizeanalysis 861 832 803 
Sample Sizevalidation 212 208 204 

 
 None of the model’s error terms portray a normal distribution or constant variance; 

however, failing these two assumptions does not affect our models’ predictions or their use in the 

control charts because we only use the point estimates generated from the models.  Figure 4.1 

displays histograms of each of our three models’ studentized error distributions.  We believe the 

few extreme, more than four standard deviations, prediction errors cause the deviation from 

normality.  The drastic deviations from normality happen when the EAC changes by very large 

levels, greater than 30 percent.  When the EAC changes by greater than 30 percent, our models  
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Table 4.2: Equation for Four-Month Prediction Results 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Variable 

Parameter 
Estimate 
(MAPE) 

Percent 
Impact 
(OLS 
Standard 
Beta) 

p-value 
(OLS) 

Intercept 2.312   1.4E-22 
CPI -1.275 14.125% 1.2E-14 
SPI -1.159 10.084% 1.4E-13 
SCI 1.123 17.368% 4.5E-14 
Percent Difference 
Between ML and B 0.017 1.072% 2.5E-09 
EAC Prediction CPI w/ no 
EAC Change 0.009 19.756% 2.0E-11 
EAC Prediction 
Composite w/ no EAC 
Change -0.010 18.745% 1.4E-10 
EAC Prediction CPI w/ 
EAC Change 0.049 8.420% 8.5E-05 
EAC Prediction 
Composite w/  EAC 
Change -0.042 7.606% 1.8E-04 
CPI Large w/ EAC 
Change -0.043 1.170% 8.8E-07 

Large Percent Difference 
Between B and W w/ 
EAC Change 0.141 1.654% 7.8E-17 
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Table 4.3: Equation for Five-Month Prediction Results 
 

Variable 

Parameter 
Estimate 
(MAPE) 

Percent 
Impact 
(OLS 
Standard 
Beta) 

p-value 
(OLS) 

Intercept 2.7877   1.8E-46 
CPI -1.6890 22.030% 9.2E-40 
SPI -1.6161 15.931% 3.6E-33 
SCI 1.5266 27.838% 2.0E-36 
Percent Difference 
Between ML and B 0.1397 1.659% 1.3E-22 
EAC Prediction 
CPI w/ no EAC 
Change 0.1140 14.294% 1.2E-07 

EAC Prediction 
Composite w/ no 
EAC Change -0.1241 14.104% 1.7E-07 
CPI Large w/ EAC 
Change -0.0106 1.001% 7.7E-09 
CPI Small w/ EAC 
Change 0.0233 0.606% 1.3E-04 
TSPI  Large w/ 
EAC Change -0.0382 0.873% 1.8E-10 

Large Percent 
Difference 
Between B and W 
w/ EAC Change 0.1136 0.942% 3.8E-08 

Small percent 
Difference 
Between ML and B 
w/ EAC Change 0.0053 0.723% 2.9E-09 
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Table 4.4: Equation for Six-Month Prediction Results 
 

Variable 

Parameter 
Estimate 
(MAPE) 

Percent 
Impact 
(OLS 
Standard 
Beta) 

p-value 
(OLS) 

Intercept 2.150   1.3E-20 
CPI -1.203 12.809% 2.4E-16 
SPI -0.996 9.580% 7.3E-15 
SCI 1.043 17.176% 2.1E-17 
Percent Difference 
Between ML and B -0.006 1.320% 4.0E-16 
EAC Prediction CPI w/ no 
EAC Change 0.038 14.183% 1.6E-07 
EAC Prediction Composite 
w/ no EAC Change -0.025 12.449% 4.7E-06 
EAC Prediction CPI w/ 
EAC Change 0.154 15.163% 3.9E-12 
EAC Prediction Composite 
w/  EAC Change -0.133 13.824% 1.7E-11 
CPI Small w/ EAC Change 0.017 0.713% 5.7E-06 
SCI Large w/ EAC Change -0.067 1.674% 2.0E-16 

Large percent Difference 
Between B and W w/ EAC 
Change 0.150 1.109% 8.4E-11 
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do not predict the magnitude of the change accurately.  However, our models typically predict a 

change great enough to indicate a problem; we address problem indication later in the chapter.  

Therefore, even though the model diverges in accuracy, it still provides the correct information 

to decision makers.  

 

Figure 4.1: Histograms of Model Error 

 Since we only use the point estimates of our model and do not use a confidence interval, 

it proves unnecessary for the error term to contain constant variance.  We made our overall p-

value for excluding variables 0.005 to ensure the significance of the variables we select before 

minimizing for the MAPE.  All of the Cooks Distances for each of the models present values 

lower than 0.5; therefore, we conclude that none of our monthly observations overly influences 
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the coefficients in our models. Reference Appendix G for our Cooks Distance charts. 

 Due to the strong performance with the validation set, we feel confident that these few 

problems with the model assumptions do not affect our models use.  All three of the models’ 

predictions present lower MAPE scores on the validation data than the data we use to generate 

our Parameter estimates; Tables 4.1, 4.2, and 4.3 display the results of our models.  The three 

models also passed validation, the p-value for the t-test displayed a value greater than 0.1.  These 

p-values reinforce our confidence in our models’ predictions and the use of those predictions in 

our control charts.  We present a breakout of the absolute percent error (APE) of each model in 

Figure 4.2.   

 

Figure 4.2: Histograms of Model APE’s 
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Control Chart 

 Our control charts provide decision makers with the likelihood of a problem occurring 

within a given time period.  We use the z-test to test the percentage of time the control chart 

produces a correct prediction to validate our control chart bounds.  Table 4.5 presents the results 

of each of the control charts and their performance in the difference of proportions z-test.  Our 

validation data contains a limited number of problems to detect, but this does not affect our 

validation of our control charts.  Since we use the percent of time the control chart provides 

correct predictions to validate our data, the percent of total problems the control charts detect 

does not change our validation of the models.  The limited number of possible problems to detect 

in our validation data limits our analysis on this statistic for the validation data; therefore, we do 

not compare the percentage of problems the control chart detects in the validation set to the data 

set we use for our analysis.  

 We use our four-month control chart to provide the likelihood of a problem occurrence.  

Our four-month control chart does not detect as many, six percent less, of the overall problems as 

the six-month control chart; however, it does detect more of the problems in the validation data.  

The five-month control chart detects two of the problems and the six-month control chart only 

detects one problem.  The four-month control chart has the opportunity to detect five problems 

while the five and six-month control charts only have the opportunity to detect four problems.  

The loss in data due to the forecasting period causes the decrease in the detection opportunity.  

The four-month control chart presents more correct predictions than both the five and six-month 

control charts in both the analysis data and the validation data.  Since the four-month control 

chart performs better with the validation data set and only a small difference exists in the data we 

use in our analysis, we use the four-month control chart to determine likelihoods. 
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Table 4.5: Control Chart Results 
 

  
4-Month 
Prediction 

5-Month 
Prediction 

6-Month 
Prediction 

Upper Control Chart 
Bound 1.0146 1.0212 1.0211 
Lower Control Chart 
Bound 0.9787 0.9810 0.9772 
% of Time Detection 
Occurs (analysis) 28.80% 29.44% 29.27% 
% of Time Detection 
Occurs (validation) 21.00% 32.55% 15.57% 
% of Time Correct 
(analysis) 71.15% 69.35% 69.61% 
% of Time Correct 
(validation) 74.50% 67.90% 73.58% 
% of Total Problems 
Detected (analysis) 70.00% 73.50% 75% 
% of Total Problems 
Detected (validation) 40.00% 50.00% 25.00% 
p-value for Z-test 
(proportion of 
analysis<proportion of 
validation 0.834 0.343 0.866 
Sample Sizeanalysis 861 832 803 
Sample Sizevalidation 212 208 204 

 

 Using the four-month control chart, we determine the percentage of total problems the 

control charts detect within different time periods.  In addition, we determine the probability of a 

problem occurrence given a detection and the probability that a problem will not occur given that 

we do not detect a problem.  Table 4.6 displays these likelihoods.  We graph all of our correct 

and incorrect predictions, of a four-month control chart, using a scatter plot with our control 

chart bounds to provide a visual representation of our data.  See Figure 4.3 for the control chart.  

Figure 4.4 depicts a zoomed in control chart portraying data points 450-549.  In both control 

charts, grey depicts an incorrect prediction and black depicts a correct prediction.  A black dot 
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falling outside the bounds means we detect a problem and a problem occurs within six months, 

while a black dot within the bounds means we do not detect a problem and no problem occurs 

within six months.  A grey dot outside the bounds means we detect a problem and no problem 

occurs within six months, while a grey dot within the bounds means we do not detect a problem 

and a problem does occur within six months. 

Table 4.6: Breakout of Probabilities 
 

  

Within 1 
Month of 
Occurrence 

Within 2 
Months of 
Occurrence 

Within 3 
Months of 
Occurrence 

Within 4 
Months of 
Occurrence 

Within 5 
Months of 
Occurrence 

Within 6 
Months of 
Occurrence 

Percent of Total Problems 
Detected 48.00% 52.00% 58.00% 64.00% 64.00% 70.00% 
Probability of a Problem 
Given a Detection 11.06% 19.82% 29.03% 34.56% 40.09% 42.34% 

Probability of No Problem 
Given No Detection 96.59% 93.01% 90.08% 86.83% 84.55% 83.73% 

 

 In our data set, when the four-month model predicts extremely high, greater than 1.14, or 

extremely low, less than 0.935, a problem always occurs within six-months of that point.  In our 

model, we do not see a relationship between successive detections and the likelihood of problem 

occurrence.  Table 4.7 displays the results of our control chart compared to one method the DoD 

acquisition’s community currently uses, Keaton’s (2011) one standard deviation CPI detection 

algorithm.  The boxes in the table portray the conditional probabilities given a detection or non-

detection.  For example, the top left box exhibits the probability of a problem in six months 

given a detection, while the lower left box in the table depicts the probability of no problem 

occurring within six months of a detection.  The right column displays the same values except 

given a non-detection instead of a detection as the state of nature.  The top right box represents 

the false negatives and the bottom left represents the false positives.  Our method improves on 
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Keaton’s (2011) method in both false positives and false negatives.   In the next chapter, we 

discuss the implications of our findings as well as future areas to improve upon our research. 

  

 

Figure 4.3: 6-Month Control Chart Using Four-Month Predictions 
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Figure 4.4: Control Chart Using Four-Month Predictions Zoomed 

Table 4.7: Comparison of Our Results to Community Standard 
 

Our Method 
 

Community Standard (Keaton's 1 
Stdev CPI Method) 

  Detection No Detection 
 

  Detection No Detection 
Problem 42.34% 16.27% 

 
Problem 22.69% 28.00% 

No Problem 57.66% 83.73% 
 

No Problem 77.31% 72.00% 
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V: Conclusions 

Discussion of Results 

 We set out to answer a few initial research questions: 

1. Can we provide an accurate point estimate for future contractor provided EAC’s? 

2. Can we detect future major changes to the EAC?  

3. If we detect major changes to the EAC, can we provide decision makers with a timeframe 

and probability of those major changes to the EAC? 

 We answer the first question by providing three models that predict the contractor 

provided most likely EAC four, five, and six months into the future.  We develop these 

predictions through an optimization algorithm.  We find our optimization algorithm provides 

three sufficient models to provide decision makers with a point estimate of the EAC six months 

from the current period within an average of four percent.  These predictions feed into our 

control charts to answer the last two research questions. 

 Our control charts detect 70 percent of the total problems while only identifying 28 

percent of the months as potential problems.  We detect more overall problems than the previous 

researcher’s models (Keaton et al., 2011), while producing less false positive detections.  Our 

control charts provide accurate predictions of either a future problem, or no future problem, over 

seventy percent of the time.  These results provide decision makers with essential information as 

to when a problem might occur as well as its probability. 

 As with previous research, determining what represents a program problem actually 

presents itself as a problem.  To overcome this issue, we use the same definition of a problem as 

the previous research.  This ensures continuity between our research and allows us to baseline 

our results against the previous examination.    
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 Our algorithm outperforms prior researcher’s model (Keaton et al., 2011) by nearly a 

factor of two in reference to the accuracy of a control chart detection.  For example, if a decision 

maker controls 20 programs and uses our method to determine if a problem will occur in their 

program, our algorithm will detect five programs while the Keaton model will detect eight 

programs.  Two problems will exist within our algorithm’s five detections. In contrast, the same 

two problems will exist within Keaton’s model, but his model requires excessive detections (in 

this example, eight).  This added accuracy allows our algorithm to enhance the oversight to 

acquisition programs.  The higher level of accuracy enables DoD leadership to better allocate 

their resources and prevent future acquisition problems.  The early detection should prevent 

programs from remaining unstable past the 20 percent completion.  We believe if program 

managers implement our detection algorithm procedures at the start of their program, the 

likelihood of their program going over budget will decrease .   

 Our research does contain a few areas of concern; however, we feel these concerns do not 

limit the validity and reliability of our findings.  Our validation data set limits our problem 

detection since only five potential problems exists for our control chart to detect.  However, we 

overcome this issue by comparing the overall accuracy of the control charts.   To compare the 

overall accuracy, we compare the percent of correct predictions between our different data set.  

In our validation data set, we detect just over 20 percent of the time, while with the data we use 

for analysis we detect close to 28 percent of the time.  These differences ensure the accuracy and 

validity of our control charts because more potential problems exist within the data set we use for 

analysis; therefore, it should detect more frequently.  Additionally, the closeness between the 

accuracy of our analysis data and our validation data predictions reaffirms our confidence in our 

results. 
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 Our high level of accuracy for our point estimates proves a testament as to the quality of 

our data-mining algorithm that we previously described in the Methodology Chapter.  Our 

algorithm institutes a highly effective procedure for determining relationships and generating 

variables within a data set.  Since our algorithm does not need to use a specific type of data, 

researchers and analysts can use it to generate models for any type of data.  The procedures we 

establish in the Methodology Chapter serve as a way for analysts to provide leadership with the 

information they require to make informed decisions. 

Implications of Findings 

 Providing decision makers with the probability and timing of a future problem 

occurrence, enables them to focus on the DoD contracts that show early signs of poor 

performance.  This early detection will hopefully prevent future problems and save the DoD 

millions of dollars in cost overruns.  These potential problems also affect the contract schedule, 

and the early detection enables DoD leaders the opportunity to provide more oversight and 

reduce the amount of future schedule slips.  The point estimates we provide allows DoD 

leadership to compare between contracts to determine which one(s) needs the most attention. 

 These estimates enable leadership to track and forecast the course of the program.  The 

point estimates also serve as a way to distinguish between multiple detections.  For example, if a 

decision maker controls 20 programs and our algorithm detects five programs where a potential 

problem will exists, the point estimate serves as a comparison of which program needs the most 

attention.  If three of the five predictions predict a three percent increase in the EAC in four 

months and two predict an increase of five percent, a decision maker can address the two with 

the greater prediction first.  In addition, the point estimates serve as a way of checking the 

algorithm’s accuracy within their program.  Since we combine multiple acquisition programs 
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together within our analysis, some programs demonstrate more accurate results than others.  A 

decision maker can take that information to determine if they want to use our algorithm within 

their programs, which will increase their management efficiency. 

 Early problem detection increases efficiencies in DoD programs.  The detection of 

problems provides the capability to better utilize personnel.  With an algorithm to determine 

when potential problems occur, acquisition personnel will not spend their time consumed with 

tracking program data.  The acquisition personnel will spend their extra time performing their 

primary duties.  In a time of DoD downsizing, a process that automates redundant work increases 

the overall capability of the acquisitions community.   

Follow on Research 

 Using our method to determine when a possible problem will occur, permits decision 

makers to focus on the programs that require the most attention.  Our research does not provide a 

decision maker the area within the contract that causes the potential problem.  Future research 

can use lower level CPR’s to determine the cause of the potential problem.  Determining this 

cause will enable program managers to spotlight the area that needs the most attention. 

 In addition, follow on researchers can apply our methods to non DoD contracts.  Contract 

management for commercial construction companies or the Department of Energy requires close 

project management as well.  In this study, the research could focus on changes to the sensitivity 

of the detection and possibly a control chart with non-stationary bounds.  A control chart with 

non-stationary bounds would decrease the false positives of our research while maintaining the 

overall effectiveness of our detections.  A non-stationary control chart could use text-mining 

input to determine the level of deviation in the EVM data required to indicate a potential 

problem. 
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Appendix A: Example Format-1 (AEHF Program) 

 

COST PERFORMANCE REPORT Page 1 ol 3 
FORMAT 1 · WORK BREAKDOWN STRUCTURE DOLLARS IN : Thousands 

1. CONTRA CTOR 2. CONTRACT 3. PROGRAM 4 . REPORT PERIOD 

a. NAME a. NAME a. NAME a . FROM (CCYYMMDD) 
LOCKHEED MARTIN S PACE SYSTEMS AEHF AEHF SDD 20071001 

b . LOCATION (Address and ZIP code) b . NUMB ER 

111 1 LOCKHEED MARTIN W AY F0470 1·02·C·0002 p. TO (CCYYMMDD) 

c. TYPE 
d. SHARE b. PHASE (X one) 20071028 

RATIO 
S UNNYVALE , CA USA 94088 I C PAF 100/0 0/100 lxl RDT&E n PRODUCTION 

5. CONTRA CT DATA 

a. QUANTITY b. NEGOTIA TED c. EST COST A UTH d . TARGET e. TARGET P RICE I. ESTIMATED g . CONTRACT h . ESTIMATED 
PROFIT/ CONTRA CT 

PROD: 0 COST UNPRICED WORK FEE PRICE CEILING C EILING 

R&D: 3 $3,883,652 .6 5 17,714.5 5458,544 .2 / 0.0% 54,342,196 .7 $4,838,032.0 

6. E STIMATED COST AT COM PLETION 7. AUTHORIZED CONTRACTOR REPRESENTATIVE 
MANAGEMENT ESTIMATE CONTRACT BUDGET VARIANCE a. NAME (Last, First, Middle Initial) b. TITLE 

AT COMPLETION (1) BASE (2) (3) TRAN, J . CONTRACTS 

a. B EST CASE $4,364 ,262.0 c. SIGNATURE d . DA TE (CCYYMMDD) 
b . W ORST CASE $4,480,862.0 20071203 

c. MOST LIK ELY $4,377,362.1 $3 ,90 1,367 .1 S-475,995.0 

8. PERFORMA NCE DATA 

CURRENT PERIOD CUM ULATIVE TO DA TE REPROGRAM A T COM PLETION 

ITEM BUDGETED COST ACTUAL VARIANCE BUDGETED COST ACTUAL VARIANCE ADJUSTM ENTS 
WOR>< WOR>< COST WORK WORK WORK OOST WORK COST 

SCHEDULED PERfORMED PERFORMED SCHEDULE COST Sa-IEDULED PERFORMED PERfORMED SCHEDULE COOT VARIANCE BUDGET BUDGETED ESTIMATED VAIUANCE 

11) (21 131 14) JS) 1<1 (7) 1'1 !'I 1 1~ (11) 112) 113) 11~ 115) 11<) 

a. WB S EL EMENT 

TOTAL COST - AEHF SYSTEM DESIGN AND DEVElOPMENT 2 38,161 40,147 51,861 1,987 -11,714 3,175,890 3,151,116 3,506,736 -24,774 -355,620 3,882,108 4,345,003 -462,895 

SV 1&2 - SPACE VEHICLE 1&2 3 28,184 29,301 40,158 1,116 -10,857 2,853,424 2,838,185 3,202,538 -15,240 -384,354 3,337,430 3,803,096 -465,667 

1.0 - SPACE VEHICLE 4 12,551 13,148 23,298 597 -10,150 1,948,792 1,939,698 2,323,748 -9,094 -384,050 2,106,373 2,584,411 -478,038 

1.1 - SPACECRAFT BUS 5 2,212 2,221 4,826 9 -2,605 271,192 266,255 344,754 -4,937 -78,499 292,007 384,538 -92,532 

1.1.1 - STRUCTURES/PROP/THERMAL HOWE 6 134 295 869 161 -574 46,711 45,932 70,066 -779 -24,133 48,453 75,377 -26,924 

1.1.2 · GUIDANCE NAVIGATION & CONTROL 6 56 56 49 0 7 16,282 16,145 18,835 -137 -2,689 16,392 19,568 ·3,176 

1.1.3 - SOLAR ARRAYS & MECHANISMS 6 183 313 1,384 130 -1,051 37,956 38,295 50,236 -1,661 -13,941 39,038 56,917 -17,878 

1.1.4 - HIGH POWER ELECTRONICS 6 939 522 861 -416 -339 32,116 30,971 35,202 -1,144 -4,231 33,522 39,028 -5,505 

1.1.5 - TELEMETRY TRACK & CONTROL HOWE 6 0 0 2 0 -2 12,994 12,994 14,087 0 -1,093 12,994 14,097 -1,103 

1.1.6 - COMMAND/DATA HANDLING HOWE 6 0 76 232 76 -156 40,800 40,597 51,376 -203 -10,779 40,800 51,856 -11,056 

1.1.7 - SPACECRAFT BUS FLIGHT SOFTWARE 6 553 527 619 -26 -92 38,859 38,150 45,138 -709 -6,988 46,104 55,492 -9,388 

1.1.8 - SPACECRAFT BUS SErPM 6 316 317 709 1 -382 29,301 29,298 42,132 -3 -12,834 37,968 53,541 -15,573 

1.1.9 - SPACECRAFT BUS I&T 6 30 114 120 84 .., 16,173 15,872 17,683 -301 -1,811 16,735 18,662 -1,927 

1.2 - EHF PAYLOAD 5 8,846 9,613 13,881 767 -4,268 1,606,935 1,605,127 1,881,821 -1,808 -276,694 1,711,172 2,043,550 -332,378 

1.2.7 - PAYLOAD 1-17-19-21-23-25-27-45 6 8,846 9,613 13,881 767 -4,268 1,606,935 1,605,127 1,881,821 -1,808 -276,694 1,711,172 2,043,550 -332,378 

1.3 - LAUNCH SUPPORT OPERATIONS 5 245 77 27 -169 so 2,160 1,914 1,190 -246 724 11,181 10,750 431 

1.4 - SPACE VEH AGE/MAGE 5 28 61 1,147 34 -1,086 8,690 8,573 15,661 -117 -7,088 9,152 20,048 -10,896 
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COST PERFORMANCE REPORT 
Page 2 ol3 

FORMAT 1- WORK BREA KDOWN STRUCTURE DO LLARS IN : Thousands 

8. P ERF ORMANC E DAT A 

CURRENT PE RIOD C UM ULATIV E TO DATE REPROGRAM AT COM PLETIO N 

ITEM BUDGETED COST ACTUAL VARI.4HCE BUJGETEO CO$T ACTUAL VARIANCE ADJ U STMENTS 

WORK WORK COST WORK WORK WORK COST WORK COST 

SCt£0ULED PERfORMED PERfORMED SCHEDULE COST SCHEDULED PEIV"ORMEO PEIV"ORMEO SCHEDULE COST VARIANCE BUDGET BUDGETED ESTIMATED VARIANCE 

(11 (2) (31 ('I (5I (G) (1) (81 1'1 (10) 111) (12) (13) 114) ~·I (1G) 

a. W BS EL EMENT 

1.5 - SPACE VEH SEIPM 5 422 410 919 -12 -509 45,604 45,576 53,491 -28 -7,915 52,877 69,022 -16,145 

1.6 - SPACE VEH I&T 5 798 766 2,498 -31 -1,731 14,212 12,253 26,832 -1,959 -14 ,579 29,984 56,503 -26,518 

2.0 - MISSION CONTROl SYSTEM 4 8,263 9,035 9,100 772 -65 550,983 549,606 549,347 -1,377 259 682,371 679,262 3,109 

2.1 - MOPS 2-6-7-8-9-11-13-14-28-33-34-44 5 8,094 8,867 8,857 773 10 534,447 533,099 533,891 -1,348 -792 684,058 661,827 2,231 

2.6 - MCS INTEGRATION & TEST - 10 5 0 0 0 0 0 294 294 301 0 -6 294 301 -6 

2.7 - MCS SEIPM 3-4-5-12-15 5 169 168 243 0 -75 16,241 16,213 15,156 -29 1,057 18,019 17,134 884 

3.0 - INTERSEGMENT SYS ENG/PGM MGMT 4 4,105 4,143 4,215 38 -73 239,578 237,168 227,633 -2,410 '9,535 336,840 333,344 3,296 

3.1 - SYSTEM ENGINEERING - 16 5 1,174 1,144 1,152 -30 -9 69,687 69,105 62,258 -582 16,847 105,697 97,427 8,270 

3.2 - PROGRAM MANAGEMENT - 18 5 2,378 2,446 2,690 68 -245 150,695 149,075 148,708 -1,621 387 197,777 207,669 -9,9 12 

3.3 - SYSTEM DATA BASE 5 553 553 373 0 180 19,195 18,988 16,667 -207 2,321 33,166 28,228 4,938 

6.0 - INTERSEGMENT/SYSTEM LEVEL I&T 4 2,273 1,977 2,645 -296 -667 89,588 87,225 83,087 -2,363 4 ,138 175,837 175,540 297 

6.1 - SYSTEM TEST EQUIPMENT - 20 5 493 493 931 0 -438 36,577 35,440 36,555 -1,137 -1,115 58,368 61,831 -3,463 

6.2 - FACTORY SYSTEM LEVEL TEST- 22 5 692 550 776 -142 -227 20,308 19,880 18,140 -428 1,739 35,682 34,863 819 

6.3 - EARLY ORBIT OPERATIONS - 24 5 959 806 836 -154 -32 29,887 29,144 26,181 -743 2,963 84,848 61,700 2,948 

6.4 - ON-ORBIT TEST - 26 5 129 129 100 0 29 2,817 2,761 2,211 -55 551 17,139 17,146 -7 

7.0 - OPERATIONS & SUPPORT 4 831 833 716 2 116 6,948 6,949 5,739 2 1,210 17,241 16,148 1,092 

7.2 - SUSTAINING SUPPORT 29-30 5 36 36 2 0 34 265 265 105 0 161 848 722 126 

7.3 - INTERIM MAINTENANCE 31-32 5 795 797 715 2 82 6,682 6,684 5,634 2 1,049 16,393 15,427 966 

8.0 - SPECIAL STUDIES 4 162 165 184 3 -19 17,536 17,538 12,983 2 4 ,555 18,968 14,391 4,577 

8.1 - INVESTIGATION & ANALYSIS 5 162 165 184 3 -19 17,536 17,538 12,983 2 4 ,555 18,968 14,391 4,577 

SV 3 - SPACE VEHICLE 3 3 9,976 10,846 11,703 870 -857 282,966 273,432 284,698 -9,534 :8,734 505,178 502,407 2,772 

1.0A - SPACE VEHICLE 4 9,769 10,605 11,459 836 -853 277,492 268,496 260,496 -8,996 :8,000 459,419 457,479 1,940 

1.1A - SPACECRAFT BUS 5 1,196 2,244 2,138 1,049 107 59,329 52,072 49,951 -7,258 2,120 95,425 94,434 991 

1.1.1A - STRUCTURES/PROP/THERMAL H OWE 6 57 1,014 1,195 956 -181 19,497 17,262 17,955 -2,235 -693 22,737 24,104 -1,367 

1.1.2A - GUIDANCE NAVIGATION & CONTROL 6 314 104 103 -210 1 7,049 6,788 6,652 -261 136 7,801 7,792 10 

1.1.3A - SOlAR ARRAYS & MECHANISMS 6 54 54 152 0 -98 9,993 7,484 7,399 -2,509 65 15,624 15,624 0 

1.1.4A - HIGH POWER ELECTRONICS 6 343 348 -23 5 371 4,870 5,665 4,369 815 1,316 12,312 10,804 1,509 

1.1.SA - TELEMETRY TRACK & CONTROL HOWE 6 0 0 16 0 -16 3,254 2,235 2,088 -1,019 147 3,254 3,135 119 

1.1.6A - COMMAND/DATA HANDLING HOWE 6 119 63 225 -57 -163 11,281 9,262 9,276 -1,999 6 11,671 12,459 -787 

1.1.7A - SPACECRAFT BUS FLIGHT SOFTWARE 6 70 70 54 0 16 220 220 177 0 43 5,629 5,911 -281 

1.1.8A - SPACECRAFT BUS SEIPM 6 192 192 133 0 59 2,247 2,247 882 0 1,365 14,015 12,265 1,750 

1.1.9A - SPACECRAFT BUS I&T 6 47 401 283 354 119 918 868 1,152 -49 -284 2,379 2,341 38 

1.2A - EHF PAYLOAD 5 8,399 8,186 9,126 -213 -940 213,524 211 ,811 206,545 -1,713 5 ,266 332,260 331,376 884 

1.2.7A - PAYLOAD 35-37-39-41-43 6 8,399 8,186 9,126 -213 -940 213,524 211 ,811 206,545 -1,713 5 ,266 332,260 331,376 884 
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COST PERFORMANCE REPORT Page 3of 3 
FORMAT 1 ·WORK BREAKDOWN STRUCTURE DOLLARS IN: Thousands 

8. PERFORMA NCE DATA 

CURR ENT P ERIOD CUM ULATIVE TO DATE REPROGRAM A T COMPLETION 

ITEM BUDGETED COST ACTUAL VAII1AHCE 8UDGETm COST ACTUAL VAR!AHCE ADJ USTMENTS 

'WORl( WORl< COST WORK WOft{ WOftK COST WORK COST 

SCHEDULED PERF<lftiED PERF<lftiED SCHEDULE COST SCHfDill.El) PEIV"ORMEO PEIV"ORMEO SCHEDULE COST VARIANCE BUDGET BUDGETED ESnMATEO VARIANCE 

(1) (21 ~) (4) (S) (GI (1) 18) I') 110) (11) ~21 (13) 1 1~ 11~ 11<) 

a. WBS EL EMENT 

1.4A . SPACE VEH AGE/MAGE 5 14 14 0 0 14 1,948 1,948 1,555 0 393 2,478 2,478 0 

1.5A - SPACE VEH SE/PM 5 125 125 94 0 31 1,300 1,775 1,401 ·25 374 12,081 12,016 65 

1.6A - SPACE VEH I&T 5 35 35 101 0 -65 390 890 1,043 0 -153 17,176 17,176 0 

3 OA - INTERSEGMENT SYS ENG/PGM MGMT 4 207 242 245 35 -3 5,474 4,936 4,202 -538 734 37,099 36,351 748 

3.1A - SYSTEM ENGINEERING - 36 5 11 11 0 0 11 39 39 13 0 26 2,962 2,615 347 

3.2A - PROGRAM MANAGEMENT - 36 5 196 230 245 35 -14 5,435 4,897 4,189 -538 708 29,502 29,218 284 

3.3A - SYSTEM DATA BASE 5 0 0 0 0 0 0 0 0 0 0 4,635 4,518 117 

6 OA - INTERSEGMENT/SYSTEM LEVEL I&T 4 0 0 0 0 0 0 0 0 0 0 8,661 8,577 83 

6.1A - SYSTEM TEST EQUIPMENT 5 0 0 0 0 0 0 0 0 0 0 5,881 5,879 2 

6.2A - FACTORY SYSTEM LEVEL TEST - 40 5 0 0 0 0 0 0 0 0 0 0 1,941 1,859 81 

6.3A - EARLY ORBIT OPERATIONS - 42 5 0 0 0 0 0 0 0 0 0 0 839 839 0 

UC43 - UCA3 3 0 0 0 0 0 39,500 39,500 39,500 0 0 39,500 39,500 0 

b . COST OF M ONEY N 2 159 168 283 9 -115 8,503 8,215 9,363 -288 -1,168 13,269 15,516 -2,248 

c . GENERAL & A DM INISTRA TIVE N 2 1,759 1,851 2,797 92 -947 104,197 101,879 115,341 -2,318 -13,462 155,036 178,190 -23,152 

d . UNDISTRIB UTED B UDGET 2 10,991 10,991 0 

e. SUBTOTAL (Pelformance 
Measurement Baseline) 38,161 40,147 51,861 1,987 -11,714 3,175,890 3,151,116 3,506,736 -24,774 -355,620 0 0 3,893,099 4,355,994 -462,895 

f . MANAGEMENT RESERVE 2 0 8,268 

g . TOTAL 38,161 40,147 51,861 1,987 -11,714 3,175,890 3,151,116 3,506,736 -24,774 -355,620 0 0 3,901,367 

0. RECONCILIATION TO CONTRA CT BUDGET BA SE 

a. VARIANCE ADJUSTMENT I I I I ol ol I I I 
b . TOTAL CONTRACT VARIA NCE I I I I -24,774 1 -355,620 1 I 3,901,36714,377,362 1 -475,995 
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Appendix B: EVM Equations (Keaton 2011) 

Descriptive EVM 
Measures 

Equation Interpretation 

Cost Variance (CV$) 𝐶𝑉$ = 𝐵𝐶𝑊𝑃 − 𝐴𝐶𝑊𝑃 Difference between value and 
cost of work accomplished 

Normalized Cost 
Variance (NCV) 𝑁𝐶𝑉 =

𝐶𝑉$
𝐵𝐴𝐶

 
Cost Variance relative to 

contract size 
Percent Cost 

Variance (CV%) 𝐶𝑉% =
𝐶𝑉$
𝐵𝐶𝑊𝑃

∗ 100 
Shows over and under budget 

Schedule Variance 
(SV$) 

𝑆𝑉$ = 𝐵𝐶𝑊𝑃 − 𝐵𝐶𝑊𝑆 Difference between value of 
work accomplished and value 

scheduled 
Schedule Variance 

(SVMonths) 𝑆𝑉𝑀𝑜𝑛𝑡ℎ𝑠 =
𝑆𝑉$
𝐵𝐶𝑊𝑆

 
Provides a time value for work 

finished ahead and behind 
schedule 

Normalized Schedule 
Variance (NSV) 𝑁𝑆𝑉 =

𝑆𝑉$
𝐵𝐴𝐶

 
Schedule Variance relative to 

contract size 
Percent Schedule 
Variance (SV%) 𝑆𝑉% =

𝑆𝑉$
𝐵𝐶𝑊𝑆

∗ 100 
Shows ahead and behind 

schedule 
Variance At 

Completion (VAC) 
𝑉𝐴𝐶 = 𝐵𝐴𝐶 − 𝐸𝐴𝐶 Difference between cost 

budgeted and cost estimated 
Cost Performance 

Index (CPI) 𝐶𝑃𝐼 =
𝐵𝐶𝑊𝑃
𝐴𝐶𝑊𝑃

 
Compares the budget to the 

amount of money spent  

Schedule 
Performance Index 

(SPI) 
𝑆𝑃𝐼 =

𝐵𝐶𝑊𝑃
𝐵𝐶𝑊𝑆

 
Compares actual value to the 

value plan   

Schedule Cost Index 
(SCI) 

𝑆𝐶𝐼 = 𝐶𝑃𝐼 ∗ 𝑆𝑃𝐼  

Composite Index 
(CMI) 

𝐶𝑀𝐼 = 𝛼𝐶𝑃𝐼 + 𝛽𝑆𝑃𝐼  

To Complete 
Performance Index 

(TCPIEAC) 
𝑇𝐶𝑃𝐼 =

(𝐵𝐴𝐶 − 𝐵𝐶𝑊𝑃𝐶𝑈𝑀)
(𝐸𝐴𝐶 − 𝐴𝐶𝑊𝑃𝐶𝑈𝑀) 

Measures cost efficiency 
requirement to complete on-

budget 
Percent Complete 

(BAC) %Complete = �
𝐵𝐶𝑊𝑃𝐶𝑈𝑀
𝐵𝐴𝐶

� ∗ 100 
 

Compares work plan to 
program budget 

Percent Complete 
(Months) 

%Complete

= �
𝑀𝑜𝑛𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝑆𝑡𝑎𝑟𝑡 𝐷𝑎𝑡𝑒
𝑇𝑜𝑡𝑎𝑙 𝑀𝑜𝑛𝑡ℎ𝑠 𝑜𝑓 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡

�

∗ 100 
 

Compares the amount of time 
spent for a contract to the total 

amount of time  
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Appendix C: Breakout of Data 

Program Months of Data Validation (Yes/No) 

B2-EHF 14 No 

AMF JTRS SDD (BBX) 20 Yes 

MM III GRP FRP '07 20 No 

Non Line of Sight - Launch System (FCS Navy) 20 No 

C130J BUIC Del Order 0003 22 No 

LCS - CLIN 0008 AUSTAL 24 No 

E-2D Advanced Hawkeye (AHE) 27 No 

EFV SDD-2 27 Yes 

B-2 RMP 28 No 

FORCE XXI BATTLE COMMAND BRIGADE AND BELOW (FBCB2) 28 No 

NPOESS 28 No 

NMT EDM 30 No 

C-130 Block 6.5.1 HCMC 31 No 

E871209B (MH-60) 31 Yes 

CH-53 32 Yes 

V-22 33 Yes 

WINT_INC2-M 33 No 

ISPAN 34 No 

MPS - FPM 37 No 

UH-60M 37 No 

WGS BLOCK II 37 No 

MP-RTIP Phase 2 41 No 

Blue Grass Chemical Agent Destruction Pilot Plant 42 No 

DDG 1000 42 Yes 

F-35 JSF System Development & Demonstration 42 No 

Chem. Demil Stockp (Chem Demil CMA) 43 No 

GPS MUE CLIN 002 (Navstar) 43 Yes 

C130 Avionics Moderinzation Program 44 No 

SBIRS 44 No 

AEHF 45 No 

C-5 Reliability Enhancement & Reengining Program SDD 45 No 

MPEC JMPS-E (mps-exp ops) 45 No 

SM6 45 No 

MPS SEICR1 48 Yes 

MOBILE USER OBJECTIVE SYSTEM (MUOS) 50 No 

JLENS 52 No 

P-8 52 No 

  
No 
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Appendix D: Complete List of Initial Variables 

Variable Name 
EAC Lag 1 
EAC Lag 2 
EAC Lag 3 
CPI*Previous EAC 

SPI*s EAC 

TSPI* EAC 

TCPI* EAC 

SCI* EAC 

SV%* EAC 

CV%*EAC 

(% Difference Between ML and W)* EAC 
(% Difference Between ML and B)*s EAC 
(% Difference Between W and B)* EAC 
(StDev CPI)* EAC 
(StDev SPI )* EAC 
(TSPI StDev)* EAC 

(TCPI StDev)* EAC 

(SCI StDev)* EAC 

(SV% StDev)* EAC 

(CV% StDev)*EAC 

EAC Prediction CPI w/ no EAC Change 
EAC Prediction Composite w/ no EAC Change 
EAC Prediction CPI w/ EAC Change 
EAC Prediction Composite w/  EAC Change 
CPI Large w/ no EAC Change 
CPI Medium w/ no EAC Change 
CPI Small w/ no EAC Change 
SPI Large w/ no EAC Change 
SPI Medium w/ no EAC Change 
SPI Small w/ no EAC Change 
SCI Large w/ no EAC Change 
SCI Medium w/ no EAC Change 
SCI Small w/ no EAC Change 
TCPI  Large w/ no EAC Change 
TCPI  Medium w/ no EAC Change 
TCPI  Small w/ no EAC Change 
TSPI  Large w/ no EAC Change 
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TSPI  Medium w/ no EAC Change 
TSPI  Small w/ no EAC Change 
SV% Large w/ no EAC Change 
SV% Medium w/ no EAC Change 
SV% Small w/ no EAC Change 
CV% Large w/ no EAC Change 
CV% Medium w/ no EAC Change 
CV% Small w/ no EAC Change 
StDev CPI Large w/ no EAC Change 
StDev CPI Small w/ no EAC Change 
StDev SPI Large w/ no EAC Change 
StDev SPI Small w/ no EAC Change 
StDev SCI Large w/ no EAC Change 
StDev SCI Small w/ no EAC Change 
StDev SV% Large w/ no EAC Change 
StDev SV% Small w/ no EAC Change 
StDev TSPI Large w/ no EAC Change 
StDev TSPI Small w/ no EAC Change 
StDev CV% Large w/ EAC Change 
StDev CV% Small w/ EAC Change 
CPI Change 1 Month Large w/ no EAC Change 
CPI Change 1 Month Small w/ no EAC Change 
SPI Change 1 Month Large w/ no EAC Change 
SPI Change 1 Month Small w/ no EAC Change 
SCI Change 1 Month Large w/ no EAC Change 
SCI Change 1 Month Small w/ no EAC Change 
SV% Change 1 Month Large w/ no EAC Change 
SV% Change 1 Month Small w/ no EAC Change 
CV% Change 1 Month Large w/ no EAC Change 
CV% Change 1 Month Small w/ no EAC Change 
TSPI Change 1 Month Large w/ no EAC Change 
TSPI  Change 1 Month Small w/ no EAC Change 
TCPI  Change 1 Month Large w/ no EAC Change 
TCPI  Change 1 Month Small w/ no EAC Change 
CPI Change 2 Month Large w/ no EAC Change 
CPI Change 2 Month Small w/ no EAC Change 
SPI Change 2 Month Large w/ no EAC Change 
SPI Change 2 Month Small w/ no EAC Change 
SCI Change 2 Month Large w/ no EAC Change 
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SCI Change 2 Month Small w/ no EAC Change 
SV% Change 2 Month Large w/ no EAC Change 
SV% Change 2 Month Small w/ no EAC Change 
TCPI Change 2 Month Large w/ no EAC Change 
TCPI  Change 2 Month Small w/ no EAC Change 
TSPI Change 2 Month Large w/ no EAC Change 
TSPI  Change 2 Month Small w/ no EAC Change 
Large% Difference Between ML and W w/ no EAC Change 
Large% Difference Between ML and B w/ no EAC Change 
Large% Difference Between B and W w/ no EAC Change 
CPI Large w/ EAC Change 
CPI Medium w/ EAC Change 
CPI Small w/ EAC Change 
SPI Large w/ EAC Change 
SPI Medium w/ EAC Change 
SPI Small w/ EAC Change 
SCI Large w/ EAC Change 
SCI Medium w/ EAC Change 
SCI Small w/ EAC Change 
TCPI  Large w/ EAC Change 
TCPI  Medium w/ EAC Change 
TCPI  Small w/ EAC Change 
TSPI  Large w/ EAC Change 
TSPI  Medium w/ EAC Change 
TSPI  Small w/ EAC Change 
SV% Large w/ EAC Change 
SV% Medium w/ EAC Change 
SV% Small w/ EAC Change 
CV% Large w/ EAC Change 
CV% Medium w/ EAC Change 
CV% Small w/ EAC Change 
StDev CPI Large w/ EAC Change 
StDev CPI Small w/ EAC Change 
StDev SPI Large w/ EAC Change 
StDev SPI Small w/ EAC Change 
StDev SCI Large w/ EAC Change 
StDev SCI Small w/ EAC Change 
StDev SV% Large w/ EAC Change 
StDev SV% Small w/ EAC Change 
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StDev TSPI Large w/ EAC Change 
StDev TSPI Small w/ EAC Change 
StDev CV% Large w/ EAC Change 
StDev CV% Small w/ EAC Change 
CPI Change 1 Month Large w/ EAC Change 
CPI Change 1 Month Small w/ EAC Change 
SPI Change 1 Month Large w/ EAC Change 
SPI Change 1 Month Small w/ EAC Change 
SCI Change 1 Month Large w/ EAC Change 
SCI Change 1 Month Small w/ EAC Change 
SV% Change 1 Month Large w/ EAC Change 
SV% Change 1 Month Small w/ EAC Change 
CV% Change 1 Month Large w/ EAC Change 
CV% Change 1 Month Small w/ EAC Change 
TSPI Change 1 Month Large w/ EAC Change 
TSPI  Change 1 Month Small w/ EAC Change 
TCPI  Change 1 Month Large w/ EAC Change 
TCPI  Change 1 Month Small w/ EAC Change 
CPI Change 2 Month Large w/ EAC Change 
CPI Change 2 Month Small w/ EAC Change 
SPI Change 2 Month Large w/ EAC Change 
SPI Change 2 Month Small w/ EAC Change 
SCI Change 2 Month Large w/ EAC Change 
SCI Change 2 Month Small w/ EAC Change 
SV% Change 2 Month Large w/ EAC Change 
SV% Change 2 Month Small w/ EAC Change 
TCPI Change 2 Month Large w/ EAC Change 
TCPI  Change 2 Month Small w/ EAC Change 
TSPI Change 2 Month Large w/ EAC Change 
TSPI  Change 2 Month Small w/ EAC Change 
Large% Difference Between ML and W w/ EAC Change 
Large% Difference Between ML and B w/ EAC Change 
Large% Difference Between B and W w/ EAC Change 
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Appendix E: List and Definition of Variables for Backwards Stepwise Regression 

Variable Description Equation Threshold 

Intercept 
The intercept for the 
overall equation No equation No 

CPI 
Ratio of budgeted 
work to actual work 

  

𝐶𝑃𝐼 =
𝐵𝐶𝑊𝑃
𝐴𝐶𝑊𝑃

  No 

SPI 

Ratio of budgeted 
work to scheduled 
work 

  

𝑆𝑃𝐼 =
𝐵𝐶𝑊𝑃
𝐵𝐶𝑊𝑆

  No 

TCPI 

Ratio of budgeted 
performance to actual 
performance 

  

𝑇𝐶𝑃𝐼 =
(𝐵𝐴𝐶 − 𝐵𝐶𝑊𝑃)
(𝐸𝐴𝐶 − 𝐴𝐶𝑊𝑃) 

No 

TSPI 

Ratio of the budgeted 
performance to 
schedule  
performance.  This 
variable was only used 
in initial 100 variables 
and as part of 
threshold variables. 

𝑇𝐶𝑃𝐼 =
(𝐵𝐴𝐶 − 𝐵𝐶𝑊𝑃)
(𝐵𝐴𝐶 − 𝐵𝐶𝑊𝑆) 

 
SCI 

Cost ratio multiplied 
by schedule ratio 

  
𝑆𝐶𝐼 = 𝐶𝑃𝐼 ∗ 𝑆𝑃𝐼  No 

% 
Difference 
Between 
ML and B 

The percentage 
difference between the 
contractor most likely 
EAC and best EAC  % 𝐷𝑖𝑓𝑓𝑀𝐿−𝐵 = 𝐸𝐴𝐶𝑀𝐿−𝐸𝐴𝐶𝐵

𝐸𝐴𝐶𝑀𝐿
  No  

% 
Difference 
Between W 
and B 

The percentage 
difference between the 
contractor worst case 
EAC and best EAC  % 𝐷𝑖𝑓𝑓𝑊−𝐵 = 𝐸𝐴𝐶𝑊−𝐸𝐴𝐶𝐵

𝐸𝐴𝐶𝑊
  No 
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Standard 
Deviation 
CPI 

A measure of the 
variability of the last 
three CPI’s  𝑆𝑡𝑑𝑒𝑣(𝐶𝑃𝐼) = 𝑆𝑡𝑑𝑒𝑣(𝐶𝑃𝐼𝑡,𝐶𝑃𝐼𝑡−1,𝐶𝑃𝐼𝑡−2)  No 

Standard 
Deviation 
SPI  

A measure of the 
variability of the last 
three SPI’s  𝑆𝑡𝑑𝑒𝑣(𝑆𝑃𝐼) = 𝑆𝑡𝑑𝑒𝑣(𝑆𝑃𝐼𝑡,𝑆𝑃𝐼𝑡−1,𝑆𝑃𝐼𝑡−2)  No 

EAC 
Prediction 
CPI w/ no 
EAC 
Change 

A gold card EAC 
prediction based on 
CPI that only turns on 
if the EAC has not 
changed by a threshold 

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =

𝐴𝐶𝑊𝑃+𝐵𝐴𝐶−𝐵𝐶𝑊𝑃
𝐶𝑃𝐼
𝐸𝐴𝐶𝑡

𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)
𝐸𝐴𝐶1

> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0
� 

 Yes 
EAC 
Prediction 
Composite 
w/ no EAC 
Change 

A gold card EAC 
prediction based on 
SCI that only turns on 
if the EAC has not 
changed by a threshold 

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =

𝐴𝐶𝑊𝑃+𝐵𝐴𝐶−𝐵𝐶𝑊𝑃
𝑆𝐶𝐼
𝐸𝐴𝐶𝑡

𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)
𝐸𝐴𝐶1

> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0
� 

 Yes 
EAC 
Prediction 
CPI w/ 
EAC 
Change 

A gold card EAC 
prediction based on 
CPI that only turns on 
if the EAC has 
changed by a threshold 

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =

𝐴𝐶𝑊𝑃+𝐵𝐴𝐶−𝐵𝐶𝑊𝑃
𝐶𝑃𝐼
𝐸𝐴𝐶𝑡

𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)
𝐸𝐴𝐶1

< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0
� 

 Yes 
EAC 
Prediction 
Composite 
w/  EAC 
Change 

A gold card EAC 
prediction based on 
SCI that only turns on 
if the EAC has not 
changed by a threshold 

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =

𝐴𝐶𝑊𝑃+𝐵𝐴𝐶−𝐵𝐶𝑊𝑃
𝑆𝐶𝐼
𝐸𝐴𝐶𝑡

𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)
𝐸𝐴𝐶1

< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0
� 

 Yes 

CPI Large 
w/ EAC 
Change 

The CPI exceeds some 
threshold and the most 
likely EAC has 
exceeded some 
threshold.  The 
threshold for the EAC 
change is constant 

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑 𝐶𝑃𝐼 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1

𝐸𝑙𝑠𝑒 = 0
� 

 Yes 
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throughout; however, 
threshold 2 is unique 
to this equation. 

CPI Small 
w/ EAC 
Change 

The CPI is less than 
some threshold and the 
most likely EAC has 
exceeded some 
threshold.  The 
threshold for the EAC 
change is constant 
throughout; however, 
threshold 2 is unique 
to this equation. 

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑 𝐶𝑃𝐼 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1

𝐸𝑙𝑠𝑒 = 0
� 

 Yes Yes 

SPI Small 
w/ EAC 
Change 

The SPI is less than 
some threshold and the 
most likely EAC has 
exceeded some 
threshold.  The 
threshold for the EAC 
change is constant 
throughout; however, 
threshold 2 is unique 
to this equation. 

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑 𝑆𝑃𝐼 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1

𝐸𝑙𝑠𝑒 = 0
� 

 Yes 

SCI Large 
w/ EAC 
Change 

The SCI exceeds some 
threshold and the most 
likely EAC has 
exceeded some 
threshold.  The 
threshold for the EAC 
change is constant 
throughout; however, 
threshold 2 is unique 
to this equation. 

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑 𝑆𝐶𝐼 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1

𝐸𝑙𝑠𝑒 = 0
� 

 Yes 
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TCPI  
Small w/ 
EAC 
Change 

The TCPI is less than 
some threshold and the 
most likely EAC has 
exceeded some 
threshold.  The 
threshold for the EAC 
change is constant 
throughout; however, 
threshold 2 is unique 
to this equation. 

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑 𝑇𝐶𝑃𝐼 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1

𝐸𝑙𝑠𝑒 = 0
� 

 Yes 

TSPI  
Large w/ 
EAC 
Change 

The TSPI exceeds 
some threshold and the 
most likely EAC has 
exceeded some 
threshold.  The 
threshold for the EAC 
change is constant 
throughout; however, 
threshold 2 is unique 
to this equation. 

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑 𝑇𝑆𝑃𝐼 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1

𝐸𝑙𝑠𝑒 = 0
� 

 Yes 

Standard 
Deviation 
CPI Large 
w/ EAC 
Change 

The standard deviation 
of the CPI exceeds 
some threshold and the 
most likely EAC has 
exceeded some 
threshold.  The 
threshold for the EAC 
change is constant 
throughout; however, 
threshold 2 is unique 
to this equation. 

 

�
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑 𝑠𝑡𝑑𝑒𝑣(𝐶𝑃𝐼) > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1

𝐸𝑙𝑠𝑒 = 0
� 

 Yes 



 

67 
 

CPI Change 
1 Month 
Large w/ 
EAC 
Change 

The one-month change 
in CPI exceeds some 
threshold and the most 
likely EAC has 
exceeded some 
threshold.  The 
threshold for the EAC 
change is constant 
throughout; however, 
threshold 2 is unique 
to this equation. 

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑

𝐶𝑃𝐼𝑡−𝐶𝑃𝐼𝑡−1
𝐶𝑃𝐼𝑡

> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1
𝐸𝑙𝑠𝑒 = 0

� 
 Yes 

SPI Change 
1 Month 
Large w/ 
EAC 
Change 

The one-month change 
in SPI exceeds some 
threshold and the most 
likely EAC has 
exceeded some 
threshold.  The 
threshold for the EAC 
change is constant 
throughout; however, 
threshold 2 is unique 
to this equation. 

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑

𝑆𝑃𝐼𝑡−𝑆𝑃𝐼𝑡−1
𝑆𝑃𝐼𝑡

> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1
𝐸𝑙𝑠𝑒 = 0

� 
 Yes 

SCI Change 
1 Month 
Small w/ 
EAC 
Change 

The one-month change 
in SCI is less than 
some threshold and the 
most likely EAC has 
exceeded some 
threshold.  The 
threshold for the EAC 
change is constant 
throughout; however, 
threshold 2 is unique 
to this equation. 

�
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑

𝑆𝐶𝐼𝑡−𝑆𝐶𝐼𝑡−1
𝑆𝐶𝐼𝑡

< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1
𝐸𝑙𝑠𝑒 = 0

�  
 Yes 
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TSPI  
Change 1 
Month 
Small w/ 
EAC 
Change 

The one-month change 
in TSPI is less than 
some threshold and the 
most likely EAC has 
exceeded some 
threshold.  The 
threshold for the EAC 
change is constant 
throughout; however, 
threshold 2 is unique 
to this equation. 

 

�
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑

𝑇𝑆𝑃𝐼−𝑇𝑆𝑃𝐼𝑡−1
𝑇𝑆𝑃𝐼𝑡

< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1
𝐸𝑙𝑠𝑒 = 0

� 
 Yes 

CPI Change 
2 Month 
Large w/ 
EAC 
Change 

The two-month change 
in CPI exceeds some 
threshold and the most 
likely EAC has 
exceeded some 
threshold.  The 
threshold for the EAC 
change is constant 
throughout; however, 
threshold 2 is unique 
to this equation. 

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑

𝐶𝑃𝐼𝑡−𝐶𝑃𝐼𝑡−2
𝐶𝑃𝐼𝑡

> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1
𝐸𝑙𝑠𝑒 = 0

� 
 Yes 

CPI Change 
2 Month 
Small w/ 
EAC 
Change 

The two-month change 
in CPI is less than 
some threshold and the 
most likely EAC has 
exceeded some 
threshold.  The 
threshold for the EAC 
change is constant 
throughout; however, 
threshold 2 is unique 
to this equation. 

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑

𝐶𝑃𝐼𝑡−𝐶𝑃𝐼𝑡−2
𝐶𝑃𝐼𝑡

< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1
𝐸𝑙𝑠𝑒 = 0

� 
 Yes 
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SPI Change 
2 Month 
Large w/ 
EAC 
Change 

The two-month change 
in SPI exceeds some 
threshold and the most 
likely EAC has 
exceeded some 
threshold.  The 
threshold for the EAC 
change is constant 
throughout; however, 
threshold 2 is unique 
to this equation.  

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑

𝑆𝑃𝐼𝑡−𝑆𝑃𝐼𝑡−2
𝑆𝑃𝐼𝑡

> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1
𝐸𝑙𝑠𝑒 = 0

� 
 Yes 

Large% 
Difference 
Between B 
and W w/ 
EAC 
Change 

The percent difference 
between best and 
worst contractor EAC 
exceeds some 
threshold and the most 
likely EAC has 
exceeded some 
threshold. The 
threshold for the EAC 
change is constant 
throughout; however, 
threshold 2 is unique 
to this equation.  

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑

𝐸𝐴𝐶𝑊−𝐸𝐴𝐶𝐵
𝐸𝐴𝐶𝑊

> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1
𝐸𝑙𝑠𝑒 = 0

� 
 Yes 

Small% 
Difference 
Between 
ML and W 
w/ no EAC 
Change 

The percent difference 
between most likely 
and worst contractor 
EAC exceeds some 
threshold and the most 
likely EAC has 
exceeded some 
threshold. The 
threshold for the EAC 

 

�
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑

𝐸𝐴𝐶𝑊−𝐸𝐴𝐶𝑀𝐿
𝐸𝐴𝐶𝑊

< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1
𝐸𝑙𝑠𝑒 = 0

� 
 Yes 
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change is constant 
throughout; however, 
threshold 2 is unique 
to this equation.  

Small% 
Difference 
Between 
ML and B 
w/ no EAC 
Change 

The percent difference 
between most likely 
and worst contractor 
EAC is smaller than 
some threshold and the 
most likely EAC has 
exceeded some 
threshold. The 
threshold for the EAC 
change is constant 
throughout; however, 
threshold 2 is unique 
to this equation.  

 �
𝑎𝑏𝑠(𝐸𝐴𝐶1−𝐸𝐴𝐶𝑡)

𝐸𝐴𝐶1
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1𝑎𝑛𝑑

𝐸𝐴𝐶𝑀𝐿−𝐸𝐴𝐶𝐵
𝐸𝐴𝐶𝑀𝐿

< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 1
𝐸𝑙𝑠𝑒 = 0

� 
 Yes 
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Appendix F: Code for Algorithm 

Dim SSE As String, first_dynamic As String, count_beta As Integer, dynamic_var() As 
Double, Sensitivity As Integer, Num_Var As Integer, solver_range As Variant, 
remove_count As Integer, Solver_Count As Long, count_NA As Integer, numberx As 
Long, remove_var_done As Integer 
Dim Starting_point As Integer, Count_dynamic As Integer, move_dynamic_var As 
Integer, Test_order_SSE As Double, best_order As Integer, Max_num_var As String, 
Max_P As Double, Final_Optimize As Integer, place_SSE As Variant, 
Final_Optimize_Percent As Double, DevSq As Double, Passing_P As Integer 
Option Explicit 
Sub get_inputs() 
Dim count As Integer 
Range("B2").Select 
count_beta = Range(Selection, Selection.End(xlToRight)).count 
place_SSE = Range("A1").Offset(0, count_beta + 10).Address 
SSE = place_SSE 
remove_count = 0 
first_dynamic = InputBox("What is the furthest left dynamic variable cell location", " 
beta selection") 
Max_num_var = InputBox("What is the greatest amount of variables you wish to have", " 
Number of Variables") 
Range("b6").Select 
numberx = Range(Selection, Selection.End(xlDown)).count 
Application.ScreenUpdating = False 
Range("B2").Select 
Range(Selection, Selection.End(xlToRight)).Select 
Selection.Copy 
Range("b2").Offset(5 + numberx, 0).Select 
ActiveSheet.Paste 
Application.CutCopyMode = False 
 
Call Clear 
Worksheets("MainCalculations").Select 
Range(SSE).Offset(3, 0).Select 
With Selection 
    .Value = Now 
End With 
Range(first_dynamic).Offset(-1, -remove_count).Select 
Count_dynamic = Range(Selection, Selection.End(xlToRight)).count 
ReDim dynamic_var(1 To Count_dynamic, 1 To 5) As Double 
Final_Optimize_Percent = 1 
numberx = Range(Selection, Selection.End(xlDown)).count 
Passing_P = 0 
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Call Determine_Dynamic_Start 
Call Optimize_Dynamic 
Call Calculations 
Call Determine_Max_P 
Call Clear 
 
Do Until (Max_P < (0.05 / (count_beta - 1)) And Max_num_var >= (count_beta - 1)) Or 
count_beta = 1 
Passing_P = 0 
    If Max_P > (0.05 / (count_beta - 1)) Then 
        Call Remove_P_values 
        remove_count = remove_count + 1 
        Call Determine_Dynamic_Start 
        Call Optimize_Dynamic 
        Call Calculations 
        Call Clear 
        Call Determine_Max_P 
    Else 
Passing_P = 1 
        Call Remove_Standard_Beta 
        remove_count = remove_count + 1 
        Call Determine_Dynamic_Start 
        Call Optimize_Dynamic 
        Call Calculations 
        Call Clear 
        Call Determine_Max_P 
    End If 
Loop 
 
remove_var_done = 1 
Call Determine_Dynamic_Order 
Final_Optimize = 8 
Final_Optimize_Percent = 0.000001 
Call Optimize_Dynamic 
Call Final_Calculations 
 
 
Worksheets("MainCalculations").Select 
Range(SSE).Offset(4, 0).Select 
With Selection 
    .Value = Now 
End With 
Range(SSE).Offset(5, 0) = Solver_Count 
End Sub 
Sub Determine_Dynamic_Order() 
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Dim Best_order_SSE As Double, count As Integer 
Worksheets("MainCalculations").Select 
Starting_point = 0 
Range(first_dynamic).Offset(-1, -remove_count).Select 
Count_dynamic = Range(Selection, Selection.End(xlToRight)).count 
 
Worksheets("MainCalculations").Select 
Range("B2").Select 
count_beta = Range(Selection, Selection.End(xlToRight)).count 
place_SSE = Range("A1").Offset(0, count_beta + 10).Address 
SSE = place_SSE 
 
count = 0 
 
Do Until Starting_point = Count_dynamic - 1 - count_NA 
    count = 0 
    Best_order_SSE = 1 * 10 ^ 10 
    move_dynamic_var = 0 
    Do Until move_dynamic_var = Count_dynamic - Starting_point - count_NA 
        If move_dynamic_var <> 0 Then 
            Call move_dynamic 
        End If 
        Call Determine_Dynamic_Start 
        Call Optimize_Dynamic 
        If Test_order_SSE < Best_order_SSE Then 
            Best_order_SSE = Test_order_SSE 
            best_order = move_dynamic_var 
        End If 
        move_dynamic_var = move_dynamic_var + 1 
        count = count + 1 
    Loop 
    move_dynamic_var = count - best_order - 1 
        If move_dynamic_var <> 0 Then 
            Range(first_dynamic).Offset(-1, Starting_point + move_dynamic_var - 
remove_count).Select 
            Range(Selection, Selection.End(xlDown)).Select 
            Selection.Cut 
            Range(first_dynamic).Offset(-1, Starting_point - remove_count).Select 
            Selection.Insert Shift:=xlToRight 
        End If 
    Starting_point = Starting_point + 1 
Loop 
 
 
End Sub 
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Sub solver_solve() 
Dim solver_range As Variant, result As Variant 
SolverOptions MaxTime:=2000, Iterations:=20000, Precision:=0.005, 
AssumeLinear:=False, StepThru:=False, Estimates:=1, Derivatives:=1, SearchOption:=1, 
IntTolerance:=5, Scaling:=False, Convergence:=0.005, AssumeNonNeg:=False 
Worksheets("StatisticalCalculations").Range("XFD1") = count_beta 
solver_range = Worksheets("StatisticalCalculations").Range("XFD19") 
SolverOk SetCell:=SSE, MaxMinVal:=2, ValueOf:="0", 
ByChange:=Range(solver_range) 
result = SolverSolve(True, True) 
SolverSolve UserFinish:=True 
Solver_Count = Solver_Count + 1 
 
 
 
End Sub 
Sub Determine_Dynamic_Start() 
Dim count As Integer, Count_T As Integer, best_sse As Double, test_SSE As Double, 
Count_Overall As Integer, test_dependents As Variant, no_error As Integer 
 
Worksheets("MainCalculations").Select 
Range("B2").Select 
count_beta = Range(Selection, Selection.End(xlToRight)).count 
place_SSE = Range("A1").Offset(0, count_beta + 10).Address 
SSE = place_SSE 
no_error = 0 
count = 0 
 
 
 
         
count = 0 
 
If remove_var_done = 0 Then 
 
NA_Finder_Start: 
        Do Until count = Count_dynamic 
        On Error GoTo Error_Handler_Start 
        test_dependents = Worksheets("MainCalculations").Range(first_dynamic).Offset(0, 
count - remove_count).Dependents 
        count = count + 1 
        Loop 
 
count = 0 
count_NA = 0 
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'Count NA dynamic variables 
        Do Until count = Count_dynamic 
        If Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - 
remove_count) = "NA" Then 
            count_NA = count_NA + 1 
        End If 
        count = count + 1 
        Loop 
 
count = 0 
 
'Move NA dynamic variables 
        Do Until count = Count_dynamic - count_NA 
        If Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - 
remove_count) = "NA" Then 
            Worksheets("MainCalculations").Range(first_dynamic).Offset(-1, count - 
remove_count).Select 
            Range(Selection, Selection.End(xlDown)).Select 
            Selection.Cut 
            Worksheets("MainCalculations").Range(first_dynamic).Offset(-1, count - 
remove_count).Select 
            Selection.End(xlToRight).Select 
            Selection.Offset(0, 1).Select 
            Selection.Insert Shift:=xlToRight 
            count = -1 
        End If 
        count = count + 1 
        Loop 
End If 
 
count = 0 
 
    'Enter low end of range for dynamic variables 
        Do Until count = Count_dynamic 
        dynamic_var(count + 1, 2) = 
Worksheets("MainCalculations").Range(first_dynamic).Offset(1, count - remove_count) 
        count = count + 1 
        Loop 
     
count = 0 
 
    'Enter high end of range for dynamic variables 
        Do Until count = Count_dynamic 
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        dynamic_var(count + 1, 3) = 
Worksheets("MainCalculations").Range(first_dynamic).Offset(2, count - remove_count) 
        count = count + 1 
        Loop 
 
count = 0 
     
    'Enter range of dynamic variable 
        Do Until count = Count_dynamic 
        dynamic_var(count + 1, 4) = dynamic_var(count + 1, 3) - dynamic_var(count + 1, 2) 
        count = count + 1 
        Loop 
         
'Find starting point for the dynamic variables 
Do Until Count_Overall = 1 
count = 0 
 
    Do Until count = Count_dynamic - count_NA 
              
        no_error = 0 
        Count_T = 0 
        If count = 0 And Count_Overall = 0 Then 
            best_sse = 1 * 10 ^ 100 
        End If 
         
        Do Until Count_T = 20 
         
        If Count_T = 0 Then 
            dynamic_var(count + 1, 1) = 
Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - remove_count) 
        End If 
         
        Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - 
remove_count) = _ 
        dynamic_var(count + 1, 2) + (dynamic_var(count + 1, 4) / 20) * (Count_T) 
        Call solver_solve 
        test_SSE = Worksheets("MainCalculations").Range(SSE) 
         
        If test_SSE < best_sse Then 
            best_sse = test_SSE 
            'Save Best SSE for starting point 
            dynamic_var(count + 1, 5) = best_sse 
            dynamic_var(count + 1, 1) = dynamic_var(count + 1, 2) + (dynamic_var(count + 
1, 4) / 20) * (Count_T) 
        End If 



 

77 
 

         
        Count_T = Count_T + 1 
        no_error = 1 
 
Error_Handler_Start: 
    If no_error = 0 Then 
        Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - 
remove_count) = "NA" 
        On Error GoTo 0 
        count = count + 1 
        Resume NA_Finder_Start 
    End If 
 
        Loop 
If no_error = 1 Then 
    Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - 
remove_count) = dynamic_var(count + 1, 1) 
    Call solver_solve 
End If 
    count = count + 1 
    Loop 
Count_Overall = Count_Overall + 1 
Loop 
 
End Sub 
Sub Optimize_Dynamic() 
Dim Change As Double, Count_Overall As Integer, count As Integer, Count_T As 
Integer, Percent_Change As Double, old_value As Double, old_sse As Double, 
Value_change_percent As Double, test_dependents As Variant 
Dim value_change As Double, test_SSE As Double, best_sse, response1 As Variant, 
start_value As Double, start_sse As Double, positive_direction_sse As Double, 
negative_direction_sse As Double, no_error As Integer 
Count_Overall = 0 
Worksheets("MainCalculations").Select 
Range("B2").Select 
count_beta = Range(Selection, Selection.End(xlToRight)).count 
place_SSE = Range("A1").Offset(0, count_beta + 10).Address 
SSE = place_SSE 
count = 0 
no_error = 0 
Range("b6").Select 
numberx = Range(Selection, Selection.End(xlDown)).count 
 
count = 0 
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If remove_var_done = 0 Then 
 
'Find NA's 
NA_Finder_Optimize: 
        Do Until count = Count_dynamic 
        On Error GoTo Error_Handler_Optimize 
        test_dependents = Worksheets("MainCalculations").Range(first_dynamic).Offset(0, 
count - remove_count).Dependents 
        count = count + 1 
        Loop 
 
count = 0 
count_NA = 0 
 
'Count NA dynamic variables 
        Do Until count = Count_dynamic 
        If Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - 
remove_count) = "NA" Then 
            count_NA = count_NA + 1 
        End If 
        count = count + 1 
        Loop 
 
count = 0 
 
'Move NA dynamic variables 
        Do Until count = Count_dynamic - count_NA 
        If Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - 
remove_count) = "NA" Then 
            Worksheets("MainCalculations").Range(first_dynamic).Offset(-1, count - 
remove_count).Select 
            Range(Selection, Selection.End(xlDown)).Select 
            Selection.Cut 
            Worksheets("MainCalculations").Range(first_dynamic).Offset(-1, count - 
remove_count).Select 
            Selection.End(xlToRight).Select 
            Selection.Offset(0, 1).Select 
            Selection.Insert Shift:=xlToRight 
            count = -1 
        End If 
        count = count + 1 
        Loop 
 
End If 
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count = 0 
 
    'Enter low end of range for dynamic variables 
        Do Until count = Count_dynamic 
        dynamic_var(count + 1, 2) = 
Worksheets("MainCalculations").Range(first_dynamic).Offset(1, count - remove_count) 
        count = count + 1 
        Loop 
     
count = 0 
 
    'Enter high end of range for dynamic variables 
        Do Until count = Count_dynamic 
        dynamic_var(count + 1, 3) = 
Worksheets("MainCalculations").Range(first_dynamic).Offset(2, count - remove_count) 
        count = count + 1 
        Loop 
 
count = 0 
     
    'Enter range of dynamic variable 
        Do Until count = Count_dynamic 
        dynamic_var(count + 1, 4) = dynamic_var(count + 1, 3) - dynamic_var(count + 1, 2) 
        count = count + 1 
        Loop 
 
count = 0 
 
Do Until Count_Overall = 1 + Final_Optimize 
 
count = 0 
 
Do Until count = Count_dynamic - count_NA 
         
        Count_T = 0 
        Percent_Change = 0.001 
        positive_direction_sse = 10 ^ 12 
        negative_direction_sse = 10 ^ 12 
         
    Do Until Percent_Change >= 0 And Percent_Change < 0.0001 * 
Final_Optimize_Percent 
         
If Count_T = 0 Then 
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        start_value = Worksheets("MainCalculations").Range(first_dynamic).Offset(0, 
count - remove_count) 
        start_sse = Worksheets("MainCalculations").Range(SSE) 
             
            'save old coefficients if starting values better (hard for solver to optimize when 
radically different) 
            Range("b2").Select 
            Range(Selection, Selection.End(xlToRight)).Copy 
            Range("b2").Offset(5 + numberx, 0).Select 
            ActiveSheet.Paste 
            Application.CutCopyMode = False 
             
        old_value = start_value 
        old_sse = start_sse 
 
'determine change direction 
        Change = (dynamic_var(count + 1, 4) / 40) / (Count_Overall + 1) 
         
        'Check to make sure positive change isn't outside positive range 
        If old_value + Change < dynamic_var(count + 1, 3) Then 
        Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - 
remove_count) = _ 
        old_value + Change 
            Call solver_solve 
            positive_direction_sse = Worksheets("MainCalculations").Range(SSE) 
            Else 
            positive_direction_sse = 10 ^ 12 
        End If 
         
        'Check to make sure positive change isn't outside positive range 
        If old_value - Change > dynamic_var(count + 1, 2) Then 
        Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - 
remove_count) = _ 
        old_value - Change 
            Call solver_solve 
            negative_direction_sse = Worksheets("MainCalculations").Range(SSE) 
        Else 
            negative_direction_sse = 10 ^ 12 
        End If 
        If negative_direction_sse < positive_direction_sse Then 
            Change = Change * -1 
            test_SSE = negative_direction_sse 
        Else 
            test_SSE = positive_direction_sse 
        End If 
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      old_value = old_value + Change 
      Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - 
remove_count) = old_value 
      Call solver_solve 
End If 
 
If Count_T <> 0 Then 
         
         
        old_sse = Worksheets("MainCalculations").Range(SSE) 
        Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - 
remove_count) = _ 
        old_value + Change 
        old_value = Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count 
- remove_count) 
        Call solver_solve 
        test_SSE = Worksheets("MainCalculations").Range(SSE) 
 End If 
 
        Percent_Change = (old_sse - test_SSE) / old_sse 
 
If Count_T = 200 Then 
      Percent_Change = 0 
End If 
 
        If old_sse < test_SSE Then 
            Change = Change * -0.5 
        End If 
 
        Count_T = Count_T + 1 
         
 
 
If old_value + Change < dynamic_var(count + 1, 2) Or old_value + Change > 
dynamic_var(count + 1, 3) Then 
    Percent_Change = 0 
End If 
 
    Loop 
         
    'save old value in array 
     dynamic_var(count + 1, 1) = old_value 
         
        'check to make sure not outside of lower range 
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        If Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - 
remove_count) < dynamic_var(count + 1, 2) Then 
            Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - 
remove_count) = dynamic_var(count + 1, 2) 
            Call solver_solve 
            best_sse = Worksheets("MainCalculations").Range(SSE) 
            dynamic_var(count + 1, 1) = 
Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - remove_count) 
            dynamic_var(count + 1, 5) = best_sse 
            Percent_Change = 0 
        End If 
         
        'check to make sure not outside of upper range 
        If Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - 
remove_count) > dynamic_var(count + 1, 3) Then 
            Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - 
remove_count) = dynamic_var(count + 1, 3) 
            Call solver_solve 
            test_SSE = Worksheets("MainCalculations").Range(SSE) 
            dynamic_var(count + 1, 1) = 
Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - remove_count) 
            dynamic_var(count + 1, 5) = best_sse 
            Percent_Change = 0 
        End If 
         
        'check to make sure new sse is better than start sse 
        If start_sse < test_SSE Then 
            Range("b2").Offset(5 + numberx, 0).Select 
            Range(Selection, Selection.End(xlToRight)).Copy 
            Range("b2").Select 
            ActiveSheet.Paste 
            Application.CutCopyMode = False 
            dynamic_var(count + 1, 1) = start_value 
            start_sse = best_sse 
            test_SSE = best_sse 
            Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - 
remove_count) = start_value 
            Call solver_solve 
        End If 
       
    Call solver_solve 
    best_sse = Range(SSE) 
    dynamic_var(count + 1, 5) = best_sse 
     
    count = count + 1 
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        Loop 
Call solver_solve 
Test_order_SSE = Range(SSE) 
Count_Overall = Count_Overall + 1 
Loop 
 
        no_error = 1 
 
Error_Handler_Optimize: 
    If no_error = 0 Then 
        Worksheets("MainCalculations").Range(first_dynamic).Offset(0, count - 
remove_count) = "NA" 
        On Error GoTo 0 
        count = count + 1 
        Resume NA_Finder_Optimize 
    End If 
     
        Application.DisplayStatusBar = True 
        If Passing_P = 0 Then 
            Application.StatusBar = "Failing P's, " & count_beta & "Var's, MAPE " & 
Round(Range(SSE).Offset(1, 0), 2) 
            Else 
            Application.StatusBar = "Failing P's, " & count_beta & "Var's, MAPE " & 
Round(Range(SSE).Offset(1, 0), 2) 
        End If 
End Sub 
Sub Calculations() 
Dim title_end2, count_v As Long, count_h As Long, title_end3 As Variant, count_find 
As Integer, SE_value As Double, result As Variant, count As Integer 
Dim endval As String, endval2 As String, Title_end As String, tstat_value As Double, 
xbar As Double, stdev_x As Double, Sum_stdBeta As Double, Error_range As Variant 
 
Worksheets("MainCalculations").Select 
Range("B2").Select 
count_beta = Range(Selection, Selection.End(xlToRight)).count 
place_SSE = Range("A1").Offset(0, count_beta + 10).Address 
SSE = place_SSE 
Range("b6").Select 
numberx = Range(Selection, Selection.End(xlDown)).count 
 
'Inverse Matrix Calculation 
Worksheets("MainCalculations").Select 
Worksheets("StatisticalCalculations").Select 
Range("XFD1") = count_beta 
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Range("XFD3") = numberx 
endval2 = Range("xfd4") 
endval = Range("XFD2") 
Title_end = Range("XFD5") 
title_end2 = Range("xfd6") 
Worksheets("StatisticalCalculations").Activate 
Range("h2" & ":" & endval).Select 
    Selection.FormulaArray = _ 
"=MINVERSE(MMULT(TRANSPOSE(MainCalculations!b6:" & endval2 & 
"),MainCalculations!b6:" & endval2 & "))" 
     
    'Title inverse matrix 
    Range("h1:" & Title_end).Select 
    With Selection 
        .HorizontalAlignment = xlCenter 
        .VerticalAlignment = xlBottom 
        .WrapText = False 
        .Orientation = 0 
        .AddIndent = False 
        .IndentLevel = 0 
        .ShrinkToFit = False 
        .ReadingOrder = xlContext 
        .MergeCells = False 
    End With 
    Selection.Merge 
    Range("h1:" & Title_end) = "X Inverse Matrix" 
     
'Fill in chart 
Worksheets("StatisticalCalculations").Range("c3") = count_beta - 1 
Worksheets("StatisticalCalculations").Range("c4") = numberx - count_beta 
Worksheets("StatisticalCalculations").Range("c5") = numberx - 1 
Worksheets("StatisticalCalculations").Range("b4") = 
Worksheets("MainCalculations").Range(SSE) 
Worksheets("StatisticalCalculations").Range("b5") = 
Application.WorksheetFunction.DevSq(Worksheets("MainCalculations").Range("A6:A" 
& numberx + 5)) 
Worksheets("StatisticalCalculations").Range("g7") = numberx 
Worksheets("StatisticalCalculations").Range("g8") = count_beta 
 
'Variance-covariance matrix 
count_v = 0 
count_h = 0 
Do Until count_h = count_beta 
        Do Until count_v = count_beta 
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   Worksheets("StatisticalCalculations").Range("h2").Offset(count_beta + 2 + count_v, 
count_h) = _ 
   Worksheets("StatisticalCalculations").Range("h2").Offset(count_v, count_h) * 
Worksheets("StatisticalCalculations").Range("d4") 
    count_v = count_v + 1 
    Loop 
    count_v = 0 
    count_h = count_h + 1 
     
Loop 
 
'Title variance covariance matrix 
    Range("h" & count_beta + 3 & ":" & title_end2).Select 
    With Selection 
        .HorizontalAlignment = xlCenter 
        .VerticalAlignment = xlBottom 
        .WrapText = False 
        .Orientation = 0 
        .AddIndent = False 
        .IndentLevel = 0 
        .ShrinkToFit = False 
        .ReadingOrder = xlContext 
        .MergeCells = False 
    End With 
    Selection.Merge 
    Range("h" & count_beta + 3 & ":" & title_end2) = "Variance-Covariance Matrix" 
     
'Correlation matrix 
 
count_v = 0 
count_h = 0 
Worksheets("StatisticalCalculations").Range("XFD11") = 3 
Worksheets("StatisticalCalculations").Range("XFD12") = 3 
Dim static_start As String, static_end As String, dynamic_start As String, dynamic_end 
As String 
Do Until count_h = count_beta - 1 
 
 
         
        Do Until count_v = count_beta - 1 
 
static_start = Worksheets("StatisticalCalculations").Range("XFD7") 
static_end = Worksheets("StatisticalCalculations").Range("XFD8") 
dynamic_start = Worksheets("StatisticalCalculations").Range("XFD9") 
dynamic_end = Worksheets("StatisticalCalculations").Range("XFD10") 
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        Worksheets("StatisticalCalculations").Range("h2").Offset(count_beta * 2 + 4 + 
count_v, count_h) = _ 
        "=correl(MainCalculations!" & static_start & ":" & static_end & 
",MainCalculations!" & dynamic_start & ":" & dynamic_end & ")" 
         
         count_v = count_v + 1 
         Worksheets("StatisticalCalculations").Range("XFD12") = 3 + count_v 
          
    Loop 
     
    count_v = 0 
    count_h = count_h + 1 
    Worksheets("StatisticalCalculations").Range("XFD11") = 3 + count_h 
    Worksheets("StatisticalCalculations").Range("XFD12") = 3 
Loop 
 
'Title Correlation matrix 
 
title_end3 = Worksheets("StatisticalCalculations").Range("XFD13") 
 
    Range("h" & count_beta * 2 + 5 & ":" & title_end3).Select 
    With Selection 
        .HorizontalAlignment = xlCenter 
        .VerticalAlignment = xlBottom 
        .WrapText = False 
        .Orientation = 0 
        .AddIndent = False 
        .IndentLevel = 0 
        .ShrinkToFit = False 
        .ReadingOrder = xlContext 
        .MergeCells = False 
    End With 
    Selection.Merge 
    Range("h" & count_beta * 2 + 5 & ":" & title_end3) = "Correlation Matrix" 
     
 
 
 
'P-Value Variables 
 
count = 0 
 
Do Until count = count_beta 
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SE_value = (Worksheets("StatisticalCalculations").Range("h2").Offset(count_beta + 2 + 
count, count)) ^ 0.5 
tstat_value = Worksheets("MainCalculations").Range("B2").Offset(0, count) / SE_value 
Worksheets("MainCalculations").Range("B5").Offset(0, count) = _ 
Application.WorksheetFunction.TDist(Abs(tstat_value), 
Worksheets("StatisticalCalculations").Range("C4"), 1) * 2 
 
count = count + 1 
 
Loop 
 
count = 0 
 
'Calculate Standardized Beta's 
 
    Sheets("MainCalculations").Select 
    Cells.Select 
    Range("C26").Activate 
    Selection.Copy 
    Sheets("StandardBeta").Select 
    Range("A1").Select 
    ActiveSheet.Paste 
    Range("A1").Select 
    Application.CutCopyMode = False 
    Sheets("StandardBeta").Select 
    Rows("1:5").Select 
    Selection.ClearFormats 
    Range("A1").Select 
    count_h = 0 
     
    Do Until count_h = count_beta - 1 
        count_v = 0 
        Worksheets("MainCalculations").Select 
        Worksheets("MainCalculations").Range("C6").Offset(0, count_h).Select 
        Range(Selection, Selection.End(xlDown)).Select 
        xbar = Application.WorksheetFunction.Average(Selection) 
        stdev_x = Application.WorksheetFunction.StDev(Selection) 
        Worksheets("StandardBeta").Select 
         
            Do Until count_v = numberx 
            Range("C6").Offset(count_v, count_h) = 
(Worksheets("MainCalculations").Range("C6").Offset(count_v, count_h) - xbar) / 
stdev_x 
            count_v = count_v + 1 
            Loop 
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    count_h = count_h + 1 
    Loop 
 
Call solver_solve 
     
count = 0 
     
    Do Until count = count_beta - 1 
    Range("C3").Offset(0, count) = Abs(Range("C2").Offset(0, count)) 
    count = count + 1 
    Loop 
     
Range("C3").Select 
Range(Selection, Selection.End(xlToRight)).Select 
Sum_stdBeta = Application.WorksheetFunction.Sum(Selection) 
 
count = 0 
     
    Do Until count = count_beta - 1 
    Range("C4").Offset(0, count) = Abs(Range("C3").Offset(0, count)) / Sum_stdBeta 
    count = count + 1 
    Loop 
     
    Range("C4").Select 
    Range(Selection, Selection.End(xlToRight)).Select 
    Selection.Copy 
    Worksheets("MainCalculations").Select 
    Worksheets("MainCalculations").Range("C4").Select 
    ActiveSheet.Paste 
    Application.CutCopyMode = False 
    Range("A4") = "Standard Beta's" 
     
Worksheets("MainCalculations").Select 
End Sub 
Sub Clear() 
Worksheets("MainCalculations").Select 
Range("b6").Select 
numberx = Range(Selection, Selection.End(xlDown)).count 
 
    Worksheets("StatisticalCalculations").Activate 
    Range("H1:HZ703").Select 
    Selection.Clear 
    Range("G11").Select 
    Range(Selection, Selection.End(xlToLeft)).Select 
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    Range("A11:G6119").Select 
    Range("G11").Activate 
    Selection.Clear 
    Range("E8,E7,E6,C6,B5,B4,C3,C4,C5,F4,F5,G6,G7,G8,G10").Select 
    Range("G8").Activate 
    Selection.ClearContents 
    Range("C20").Select 
    Sheets("BPtest").Select 
    Cells.Select 
    Range("C20").Activate 
    Selection.ClearContents 
    Selection.ClearContents 
    Sheets("StandardBeta").Select 
    Cells.Select 
    Range("L15").Activate 
    Selection.Clear 
    Range("A1").Select 
Worksheets("MainCalculations").Select 
Range("b2").Offset(5 + numberx, 0).Select 
Range(Selection, Selection.End(xlToRight)).Select 
Selection.Clear 
End Sub 
Sub move_dynamic() 
 
     
    Range(first_dynamic).Offset(-1, Starting_point + move_dynamic_var - 
remove_count).Select 
    Range(Selection, Selection.End(xlDown)).Select 
    Selection.Cut 
    Range(first_dynamic).Offset(-1, Starting_point - remove_count).Select 
    Selection.Insert Shift:=xlToRight 
End Sub 
Sub Remove_P_values() 
Dim count As Integer, Max_Parent As Double, Min_None As Double, Min_Cross As 
Double, Min_Power As Double 
Dim test_parent As Double, test_none As Double, test_power As Double, test_cross As 
Double, Max_P As Double, Temp As Variant, Mypos As Variant, strTemp As Variant 
Dim left_word As String, right_word As String, word_length As Long, and_position As 
Long, Min_Cross_Pos As Long, Min_Power_Pos As Long, Min_None_Pos As Long, 
Max_Parent_Pos As Long 
Dim Test_Text As String, left_word_test As String, right_word_test As String, 
left_word_parent As Integer, right_word_parent As Integer, found_parent As Integer, 
Power_parent As Integer 
 
Worksheets("MainCalculations").Select 
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Range("B2").Select 
count_beta = Range(Selection, Selection.End(xlToRight)).count 
count = 0 
test_none = 1 
test_power = 1 
test_cross = 1 
Min_None = 1 
Min_Cross = 1 
Min_Power = 1 
 
 
 
'determine Min None stdBeta of failing p-values 
Do Until count = count_beta - 1 
        If UCase(Range("C5").Offset(-2, count)) = "NONE" And Range("C5").Offset(0, 
count) > 0.05 / count_beta Then 
            test_none = Range("C4").Offset(0, count) 
                If test_none < Min_None Then 
                    Min_None = test_none 
                    Min_None_Pos = count 
                End If 
        End If 
    count = count + 1 
    Loop 
     
count = 0 
 
'determine Min Power stdBeta of failing p-values 
    Do Until count = count_beta - 1 
        If UCase(Range("C5").Offset(-2, count)) = "POWER" And Range("C5").Offset(0, 
count) > 0.05 / count_beta Then 
            test_power = Range("C4").Offset(0, count) 
                If test_power < Min_Power Then 
                    Min_Power = test_power 
                    Min_Power_Pos = count 
                End If 
        End If 
    count = count + 1 
    Loop 
     
count = 0 
 
'determine Min Cross stdBeta of failing p-values 
    Do Until count = count_beta - 1 
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        If UCase(Range("C5").Offset(-2, count)) = "CROSS" And Range("C5").Offset(0, 
count) > 0.05 / count_beta Then 
            test_cross = Range("C4").Offset(0, count) 
                If test_cross < Min_Cross Then 
                    Min_Cross = test_cross 
                    Min_Cross_Pos = count 
                End If 
        End If 
    count = count + 1 
    Loop 
 
count = 0 
 
'Remove Max cross variable if it has a higher p value than max power and alpha crit 
If Min_Cross <> 1 And Min_Cross < Min_Power And Min_Cross < Min_None Then 
     
                    'find crosses and remove parent label 
                    strTemp = Range("C1").Offset(0, Min_Cross_Pos) 
                    word_length = Len(strTemp) 
                    and_position = InStr(1, strTemp, "&", vbTextCompare) 
                    left_word = Left(strTemp, and_position - 1) 
                    right_word = Right(strTemp, word_length - and_position) 
             
        Do Until count = count_beta 
         
                Test_Text = Range("C1").Offset(0, count) 
                 
            If UCase(Range("C3").Offset(0, count)) = "CROSS" And UCase(Test_Text) <> 
UCase(strTemp) Then 
                     
                    word_length = Len(Test_Text) 
                    and_position = InStr(1, Test_Text, "&", vbTextCompare) 
                    left_word_test = Left(Test_Text, and_position - 1) 
                    right_word_test = Right(Test_Text, word_length - and_position) 
                    
                        'Check to see if the to be removed first variable has any other crosses 
                        If left_word_test = left_word Or right_word_test = left_word Then 
                            left_word_parent = 1 
                        End If 
                         
                        'Check to see if the to be removed first variable has any other crosses 
                        If right_word_test = right_word Or left_word_test = right_word Then 
                            right_word_parent = 1 
                        End If 
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            End If 
             
                If UCase(Range("C3").Offset(0, count)) = "POWER" And UCase(Test_Text) 
<> UCase(strTemp) Then 
                         
                        'Check to see if the first word to be removed first variable has any other 
Powers 
                        If Test_Text = left_word Then 
                            left_word_parent = 1 
                        End If 
                         
                        'Check to see if the second word to be removed first variable has any other 
Powers 
                        If Test_Text = right_word Then 
                            right_word_parent = 1 
                        End If 
                         
                End If 
                 
             count = count + 1 
             
        Loop 
         
        count = 0 
         
        If right_word_parent = 0 Then 
                    Do Until found_parent = 1 Or count = count_beta - 1 
                         
                        If UCase(Range("C3").Offset(0, count)) = "PARENT" And 
Range("C1").Offset(0, count) = right_word Then 
                                Range("C3").Offset(0, count) = "None" 
                                found_parent = 1 
                        End If 
                    count = count + 1 
                     
                Loop 
        End If 
         
                        count = 0 
                        found_parent = 0 
                         
        If left_word_parent = 0 Then 
                    Do Until found_parent = 1 Or count = count_beta - 1 
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                        If UCase(Range("C3").Offset(0, count)) = "PARENT" And 
Range("C1").Offset(0, count) = left_word Then 
                                Range("C3").Offset(0, count) = "None" 
                                found_parent = 1 
                        End If 
                    count = count + 1 
                     
                Loop 
        End If 
         
Worksheets("RemoveVariables").Select 
Columns("A:A").Select 
Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove 
Worksheets("MainCalculations").Select 
Range("C1").Offset(0, Min_Cross_Pos).Select 
Range(Selection, Selection.End(xlDown)).Select 
    Range(Selection, Selection.End(xlDown)).Select 
    Selection.Copy 
    Sheets("RemoveVariables").Select 
    Range("A1").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
Sheets("MainCalculations").Select 
Application.CutCopyMode = False 
Selection.Delete Shift:=xlToLeft 
 
Worksheets("MainCalculations").Select 
Range("B2").Select 
count_beta = Range(Selection, Selection.End(xlToRight)).count 
place_SSE = Range("A1").Offset(0, count_beta + 10).Address 
SSE = place_SSE 
Exit Sub 
 
End If 
 
'Remove max power variable if less than alpha crit 
If Min_Power <> 1 And Min_Power < Min_None Then 
     
                    'find crosses and remove parent label 
                    strTemp = Range("C1").Offset(0, Min_Power_Pos) 
             
        Do Until count = count_beta 
         
                Test_Text = Range("C1").Offset(0, count) 
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            If UCase(Range("C3").Offset(0, count)) = "CROSS" And UCase(Test_Text) <> 
UCase(strTemp) Then 
                     
                    word_length = Len(Test_Text) 
                    and_position = InStr(1, Test_Text, "&", vbTextCompare) 
                    left_word_test = Left(Test_Text, and_position - 1) 
                    right_word_test = Right(Test_Text, word_length - and_position) 
                         
                        'Check to see if the to be removed variable has any other crosses 
                        If left_word_test = strTemp Or right_word_test = strTemp Then 
                            Power_parent = 1 
                        End If 
        
            End If 
             
                If UCase(Range("C3").Offset(0, count)) = "POWER" And UCase(Test_Text) 
<> UCase(strTemp) Then 
                         
                        'Check to see if the first word to be removed first variable has any other 
Powers 
                        If Test_Text = strTemp Then 
                            Power_parent = 1 
                        End If 
                         
                End If 
                 
             count = count + 1 
             
        Loop 
         
        count = 0 
         
        If Power_parent = 0 Then 
                    Do Until found_parent = 1 Or count = count_beta - 1 
                         
                        If UCase(Range("C3").Offset(0, count)) = "PARENT" And 
Range("C1").Offset(0, count) = strTemp Then 
                                Range("C3").Offset(0, count) = "None" 
                                found_parent = 1 
                        End If 
                    count = count + 1 
                     
                Loop 
        End If 
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Worksheets("RemoveVariables").Select 
Columns("A:A").Select 
Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove 
Worksheets("MainCalculations").Select 
Range("C1").Offset(0, Min_Power_Pos).Select 
Range(Selection, Selection.End(xlDown)).Select 
    Range(Selection, Selection.End(xlDown)).Select 
    Selection.Copy 
    Sheets("RemoveVariables").Select 
    Range("A1").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
Sheets("MainCalculations").Select 
Application.CutCopyMode = False 
Selection.Delete Shift:=xlToLeft 
 
Worksheets("MainCalculations").Select 
Range("B2").Select 
count_beta = Range(Selection, Selection.End(xlToRight)).count 
place_SSE = Range("A1").Offset(0, count_beta + 10).Address 
SSE = place_SSE 
Exit Sub 
 
End If 
 
'Remove Max None if Cross and Power are both less than alpha crit 
Worksheets("RemoveVariables").Select 
Columns("A:A").Select 
Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove 
Worksheets("MainCalculations").Select 
Range("C1").Offset(0, Min_None_Pos).Select 
Range(Selection, Selection.End(xlDown)).Select 
    Range(Selection, Selection.End(xlDown)).Select 
    Selection.Copy 
    Sheets("RemoveVariables").Select 
    Range("A1").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
Sheets("MainCalculations").Select 
Application.CutCopyMode = False 
Selection.Delete Shift:=xlToLeft 
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Worksheets("MainCalculations").Select 
Range("B2").Select 
count_beta = Range(Selection, Selection.End(xlToRight)).count 
place_SSE = Range("A1").Offset(0, count_beta + 10).Address 
SSE = place_SSE 
 
 
End Sub 
Sub Remove_Standard_Beta() 
Dim Min_stdBeta As Double, Test_stdBeta As Double, Min_stdBeta_Pos As Integer, 
Min_stdBeta_Type As String, left_word_parent As Integer, right_word_parent As Integer 
Dim count As Integer, strTemp As String, word_length As Integer, and_position As 
Integer, left_word As String, right_word As String, Test_Text As String, left_word_test 
As String 
Dim right_word_test As String, found_parent As Integer, Power_parent As Integer 
 
Worksheets("MainCalculations").Select 
Range("B2").Select 
count_beta = Range(Selection, Selection.End(xlToRight)).count 
Min_stdBeta = 1 
 
'Determine min standard beta 
    Do Until count = count_beta - 1 
        If UCase(Range("C3").Offset(0, count)) <> "PARENT" Then 
            Test_stdBeta = Range("C4").Offset(0, count) 
                If Test_stdBeta < Min_stdBeta Then 
                    Min_stdBeta = Test_stdBeta 
                    Min_stdBeta_Pos = count 
                    Min_stdBeta_Type = Range("C3").Offset(0, count) 
                End If 
        End If 
         
    count = count + 1 
     
    Loop 
 
If UCase(Min_stdBeta_Type) = "CROSS" Then 
 
count = 0 
     
                    'find crosses and remove parent label 
                    strTemp = Range("C1").Offset(0, Min_stdBeta_Pos) 
                    word_length = Len(strTemp) 
                    and_position = InStr(1, strTemp, "&", vbTextCompare) 
                    left_word = Left(strTemp, and_position - 1) 
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                    right_word = Right(strTemp, word_length - and_position) 
             
        Do Until count = count_beta 
         
                Test_Text = Range("C1").Offset(0, count) 
                 
            If UCase(Range("C3").Offset(0, count)) = "CROSS" And UCase(Test_Text) <> 
UCase(strTemp) Then 
                     
                    word_length = Len(Test_Text) 
                    and_position = InStr(1, Test_Text, "&", vbTextCompare) 
                    left_word_test = Left(Test_Text, and_position - 1) 
                    right_word_test = Right(Test_Text, word_length - and_position) 
                         
                        'Check to see if the to be removed first variable has any other crosses 
                        If left_word_test = left_word Or right_word_test = left_word Then 
                            left_word_parent = 1 
                        End If 
                         
                        'Check to see if the to be removed first variable has any other crosses 
                        If right_word_test = right_word Or left_word_test = right_word Then 
                            right_word_parent = 1 
                        End If 
                 
                
        
            End If 
             
                If UCase(Range("C3").Offset(0, count)) = "POWER" And UCase(Test_Text) 
<> UCase(strTemp) Then 
                         
                        'Check to see if the first word to be removed first variable has any other 
Powers 
                        If Test_Text = left_word Then 
                            left_word_parent = 1 
                        End If 
                         
                        'Check to see if the second word to be removed first variable has any other 
Powers 
                        If Test_Text = right_word Then 
                            right_word_parent = 1 
                        End If 
                         
                End If 
                 



 

98 
 

             count = count + 1 
             
        Loop 
         
        count = 0 
         
        If right_word_parent = 0 Then 
                    Do Until found_parent = 1 Or count = count_beta - 1 
                         
                        If UCase(Range("C3").Offset(0, count)) = "PARENT" And 
Range("C1").Offset(0, count) = right_word Then 
                                Range("C3").Offset(0, count) = "None" 
                                found_parent = 1 
                        End If 
                    count = count + 1 
                     
                Loop 
        End If 
         
                        count = 0 
                        found_parent = 0 
                         
        If left_word_parent = 0 Then 
                    Do Until found_parent = 1 Or count = count_beta - 1 
                         
                        If UCase(Range("C3").Offset(0, count)) = "PARENT" And 
Range("C1").Offset(0, count) = left_word Then 
                                Range("C3").Offset(0, count) = "None" 
                                found_parent = 1 
                        End If 
                    count = count + 1 
                     
                Loop 
        End If 
         
'Make new sheet to place viable model 
If Max_num_var * 1.2 > count_beta Then 
    Sheets.Add After:=Sheets(Sheets.count) 
    Sheets(Sheets.count).Name = "Pass, " & count_beta & " var's" 
    Sheets("MainCalculations").Select 
    Cells.Select 
    Application.Run "CB.CopyKeyPress" 
    Worksheets("Pass, " & count_beta & " var's").Select 
    ActiveSheet.Paste 
    Sheets("StatisticalCalculations").Select 



 

99 
 

    Range("A1:G10").Select 
    Application.Run "CB.CopyKeyPress" 
    Sheets("Pass, " & count_beta & " var's").Select 
    Range("XEX1").Select 
    ActiveSheet.Paste 
End If 
         
Worksheets("RemoveVariables").Select 
Columns("A:A").Select 
Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove 
Worksheets("MainCalculations").Select 
Range("C1").Offset(0, Min_stdBeta_Pos).Select 
Range(Selection, Selection.End(xlDown)).Select 
    Range(Selection, Selection.End(xlDown)).Select 
    Selection.Copy 
    Sheets("RemoveVariables").Select 
    Range("A1").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
Sheets("MainCalculations").Select 
Application.CutCopyMode = False 
Selection.Delete Shift:=xlToLeft 
 
Worksheets("MainCalculations").Select 
Range("B2").Select 
count_beta = Range(Selection, Selection.End(xlToRight)).count 
 
place_SSE = Range("A1").Offset(0, count_beta + 10).Address 
SSE = place_SSE 
Exit Sub 
 
End If 
     
If UCase(Min_stdBeta_Type) = "POWER" Then 
 
count = 0 
 
                    'find crosses and remove parent label 
                    strTemp = Range("C1").Offset(0, Min_stdBeta_Pos) 
             
        Do Until count = count_beta 
         
                Test_Text = Range("C1").Offset(0, count) 
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            If UCase(Range("C3").Offset(0, count)) = "CROSS" And UCase(Test_Text) <> 
UCase(strTemp) Then 
                     
                    word_length = Len(Test_Text) 
                    and_position = InStr(1, Test_Text, "&", vbTextCompare) 
                    count = count + 1 
                    left_word_test = Left(Test_Text, and_position - 1) 
                    right_word_test = Right(Test_Text, word_length - and_position) 
                         
                        'Check to see if the to be removed variable has any other crosses 
                        If left_word_test = strTemp Or right_word_test = strTemp Then 
                            Power_parent = 1 
                        End If 
        
            End If 
             
                If UCase(Range("C3").Offset(0, count)) = "POWER" And UCase(Test_Text) 
<> UCase(strTemp) Then 
                         
                        'Check to see if the first word to be removed first variable has any other 
Powers 
                        If Test_Text = strTemp Then 
                            Power_parent = 1 
                        End If 
                         
                End If 
                 
             count = count + 1 
             
        Loop 
         
        count = 0 
         
        If Power_parent = 0 Then 
                    Do Until found_parent = 1 Or count = count_beta - 1 
                         
                        If UCase(Range("C3").Offset(0, count)) = "PARENT" And 
Range("C1").Offset(0, count) = strTemp Then 
                                Range("C3").Offset(0, count) = "None" 
                                found_parent = 1 
                        End If 
                    count = count + 1 
                     
                Loop 
        End If 
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'Make new sheet to place viable model 
If Max_num_var * 1.2 > count_beta Then 
    Sheets.Add After:=Sheets(Sheets.count) 
    Sheets(Sheets.count).Name = "Pass, " & count_beta & " var's" 
    Sheets("MainCalculations").Select 
    Cells.Select 
    Application.Run "CB.CopyKeyPress" 
    Worksheets("Pass, " & count_beta & " var's").Select 
    ActiveSheet.Paste 
    Sheets("StatisticalCalculations").Select 
    Range("A1:G10").Select 
    Application.Run "CB.CopyKeyPress" 
    Sheets("Pass, " & count_beta & " var's").Select 
    Range("XEX1").Select 
    ActiveSheet.Paste 
End If 
         
Worksheets("RemoveVariables").Select 
Columns("A:A").Select 
Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove 
Worksheets("MainCalculations").Select 
Range("C1").Offset(0, Min_stdBeta_Pos).Select 
Range(Selection, Selection.End(xlDown)).Select 
    Range(Selection, Selection.End(xlDown)).Select 
    Selection.Copy 
    Sheets("RemoveVariables").Select 
    Range("A1").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
Sheets("MainCalculations").Select 
Application.CutCopyMode = False 
Selection.Delete Shift:=xlToLeft 
 
Worksheets("MainCalculations").Select 
Range("B2").Select 
count_beta = Range(Selection, Selection.End(xlToRight)).count 
 
place_SSE = Range("A1").Offset(0, count_beta + 10).Address 
SSE = place_SSE 
Exit Sub 
 
End If 
 
If UCase(Min_stdBeta_Type) = "NONE" Then 



 

102 
 

 
'Make new sheet to place viable model 
If Max_num_var * 1.2 > count_beta Then 
    Sheets.Add After:=Sheets(Sheets.count) 
    Sheets(Sheets.count).Name = "Pass, " & count_beta & " var's" 
    Sheets("MainCalculations").Select 
    Cells.Select 
    Application.Run "CB.CopyKeyPress" 
    Worksheets("Pass, " & count_beta & " var's").Select 
    ActiveSheet.Paste 
    Sheets("StatisticalCalculations").Select 
    Range("A1:G10").Select 
    Application.Run "CB.CopyKeyPress" 
    Sheets("Pass, " & count_beta & " var's").Select 
    Range("XEX1").Select 
    ActiveSheet.Paste 
End If 
 
Worksheets("RemoveVariables").Select 
Columns("A:A").Select 
Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove 
Worksheets("MainCalculations").Select 
Range("C1").Offset(0, Min_stdBeta_Pos).Select 
Range(Selection, Selection.End(xlDown)).Select 
    Range(Selection, Selection.End(xlDown)).Select 
    Selection.Copy 
    Sheets("RemoveVariables").Select 
    Range("A1").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
Sheets("MainCalculations").Select 
Application.CutCopyMode = False 
Selection.Delete Shift:=xlToLeft 
 
Worksheets("MainCalculations").Select 
Range("B2").Select 
count_beta = Range(Selection, Selection.End(xlToRight)).count 
 
place_SSE = Range("A1").Offset(0, count_beta + 10).Address 
SSE = place_SSE 
End If 
 
End Sub 
Sub Determine_Max_P() 
Dim test_p As Double, count As Integer 
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Worksheets("MainCalculations").Select 
Range("B2").Select 
count_beta = Range(Selection, Selection.End(xlToRight)).count 
Worksheets("MainCalculations").Select 
Max_P = 0 
    'find max p value of non parent variables 
    Do Until count = count_beta - 1 
        If UCase(Range("C5").Offset(-2, count)) <> "PARENT" Then 
            test_p = Range("C5").Offset(0, count) 
                    If test_p > Max_P Then 
                        Max_P = test_p 
                    End If 
        End If 
        count = count + 1 
    Loop 
 
 
End Sub 
Sub Final_Calculations() 
Dim numberx As Long, title_end2, count_v As Long, count_h As Long, title_end3 As 
Variant, count_find As Integer, SE_value As Double, result As Variant 
Dim endval As String, endval2 As String, Title_end As String, tstat_value As Double, 
xbar As Double, stdev_x As Double, Sum_stdBeta As Double, Error_range As Variant 
 
Worksheets("MainCalculations").Select 
Range("B2").Select 
count_beta = Range(Selection, Selection.End(xlToRight)).count 
place_SSE = Range("A1").Offset(0, count_beta + 10).Address 
SSE = place_SSE 
Range("b6").Select 
numberx = Range(Selection, Selection.End(xlDown)).count 
 
'Inverse Matrix Calculation 
Worksheets("MainCalculations").Select 
Range("c6").Select 
numberx = Range(Selection, Selection.End(xlDown)).count 
Worksheets("StatisticalCalculations").Select 
Range("XFD1") = count_beta 
Range("XFD3") = numberx 
endval2 = Range("xfd4") 
endval = Range("XFD2") 
Title_end = Range("XFD5") 
title_end2 = Range("xfd6") 
Worksheets("StatisticalCalculations").Activate 
Range("h2" & ":" & endval).Select 
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    Selection.FormulaArray = _ 
"=MINVERSE(MMULT(TRANSPOSE(MainCalculations!b6:" & endval2 & 
"),MainCalculations!b6:" & endval2 & "))" 
     
    'Title inverse matrix 
    Range("h1:" & Title_end).Select 
    With Selection 
        .HorizontalAlignment = xlCenter 
        .VerticalAlignment = xlBottom 
        .WrapText = False 
        .Orientation = 0 
        .AddIndent = False 
        .IndentLevel = 0 
        .ShrinkToFit = False 
        .ReadingOrder = xlContext 
        .MergeCells = False 
    End With 
    Selection.Merge 
    Range("h1:" & Title_end) = "X Inverse Matrix" 
     
'Fill in chart 
Worksheets("StatisticalCalculations").Range("c3") = count_beta - 1 
Worksheets("StatisticalCalculations").Range("c4") = numberx - count_beta 
Worksheets("StatisticalCalculations").Range("c5") = numberx - 1 
Worksheets("StatisticalCalculations").Range("b4") = 
Worksheets("MainCalculations").Range(SSE) 
Worksheets("StatisticalCalculations").Range("b5") = 
Application.WorksheetFunction.DevSq(Worksheets("MainCalculations").Range("A6:A" 
& numberx + 5)) 
Worksheets("StatisticalCalculations").Range("g7") = numberx 
Worksheets("StatisticalCalculations").Range("g8") = count_beta 
 
'Variance-covariance matrix 
count_v = 0 
count_h = 0 
Do Until count_h = count_beta 
        Do Until count_v = count_beta 
   Worksheets("StatisticalCalculations").Range("h2").Offset(count_beta + 2 + count_v, 
count_h) = _ 
   Worksheets("StatisticalCalculations").Range("h2").Offset(count_v, count_h) * 
Worksheets("StatisticalCalculations").Range("d4") 
    count_v = count_v + 1 
    Loop 
    count_v = 0 
    count_h = count_h + 1 
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Loop 
 
'Title variance covariance matrix 
    Range("h" & count_beta + 3 & ":" & title_end2).Select 
    With Selection 
        .HorizontalAlignment = xlCenter 
        .VerticalAlignment = xlBottom 
        .WrapText = False 
        .Orientation = 0 
        .AddIndent = False 
        .IndentLevel = 0 
        .ShrinkToFit = False 
        .ReadingOrder = xlContext 
        .MergeCells = False 
    End With 
    Selection.Merge 
    Range("h" & count_beta + 3 & ":" & title_end2) = "Variance-Covariance Matrix" 
     
'Correlation matrix 
 
count_v = 0 
count_h = 0 
Worksheets("StatisticalCalculations").Range("XFD11") = 3 
Worksheets("StatisticalCalculations").Range("XFD12") = 3 
Dim static_start As String, static_end As String, dynamic_start As String, dynamic_end 
As String 
Do Until count_h = count_beta - 1 
 
 
         
        Do Until count_v = count_beta - 1 
 
static_start = Worksheets("StatisticalCalculations").Range("XFD7") 
static_end = Worksheets("StatisticalCalculations").Range("XFD8") 
dynamic_start = Worksheets("StatisticalCalculations").Range("XFD9") 
dynamic_end = Worksheets("StatisticalCalculations").Range("XFD10") 
         
        Worksheets("StatisticalCalculations").Range("h2").Offset(count_beta * 2 + 4 + 
count_v, count_h) = _ 
        "=correl(MainCalculations!" & static_start & ":" & static_end & 
",MainCalculations!" & dynamic_start & ":" & dynamic_end & ")" 
         
         count_v = count_v + 1 
         Worksheets("StatisticalCalculations").Range("XFD12") = 3 + count_v 
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    Loop 
     
    count_v = 0 
    count_h = count_h + 1 
    Worksheets("StatisticalCalculations").Range("XFD11") = 3 + count_h 
    Worksheets("StatisticalCalculations").Range("XFD12") = 3 
Loop 
 
'Title Correlation matrix 
 
title_end3 = Worksheets("StatisticalCalculations").Range("XFD13") 
 
    Range("h" & count_beta * 2 + 5 & ":" & title_end3).Select 
    With Selection 
        .HorizontalAlignment = xlCenter 
        .VerticalAlignment = xlBottom 
        .WrapText = False 
        .Orientation = 0 
        .AddIndent = False 
        .IndentLevel = 0 
        .ShrinkToFit = False 
        .ReadingOrder = xlContext 
        .MergeCells = False 
    End With 
    Selection.Merge 
    Range("h" & count_beta * 2 + 5 & ":" & title_end3) = "Correlation Matrix" 
     
 
'calculate durbin watson 
 
Dim error_cell As String, count As Integer, Count_error As Long 
 
    'determine which cell has error 
        Do Until UCase(error_cell) = "ERROR" 
            error_cell = Worksheets("MainCalculations").Range("A1").Offset(0, count_find) 
                count_find = count_find + 1 
        Loop 
    Do Until Count_error = numberx - 1 
        Worksheets("StatisticalCalculations").Range("b12").Offset(Count_error, 0) = 
(Worksheets("MainCalculations").Range("A1").Offset(5 + Count_error, count_find - 1) - 
_ 
        Worksheets("MainCalculations").Range("A1").Offset(5 + Count_error + 1, 
count_find - 1)) ^ 2 
        Count_error = Count_error + 1 
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    Loop 
 
 
 
'Leverage 
Dim Var_moving As String, X_inv As String 
 
count = 0 
 
Do Until count = numberx 
 
    Worksheets("StatisticalCalculations").Range("XFD14") = count 
    Var_moving = Worksheets("StatisticalCalculations").Range("XFD15") 
    X_inv = Worksheets("StatisticalCalculations").Range("XFD16") 
 
    Worksheets("StatisticalCalculations").Range("c11").Offset(count, 0) = 
"=Sumproduct(Mmult(" & "MainCalculations!" & Var_moving & "," & 
"StatisticalCalculations!" & X_inv & ")," & "MainCalculations!" & Var_moving & ")" 
 
count = count + 1 
 
Loop 
 
'Studentized Residuals 
 
count = 0 
 
Do Until count = numberx 
 
    Worksheets("StatisticalCalculations").Range("D11").Offset(count, 0) = 
Worksheets("MainCalculations").Range("A1").Offset(5 + count, count_find - 1) / _ 
    (Worksheets("StatisticalCalculations").Range("D4") * (1 - 
Worksheets("StatisticalCalculations").Range("C11").Offset(count, 0))) ^ 0.5 
     
    count = count + 1 
 
 
Loop 
 
Worksheets("StatisticalCalculations").Range("D11").Select 
    Range(Selection, Selection.End(xlDown)).Select 
    ActiveWorkbook.Worksheets("StatisticalCalculations").sort.SortFields.Clear 
    ActiveWorkbook.Worksheets("StatisticalCalculations").sort.SortFields.Add 
Key:=Range("D11"), _ 
        SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal 
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    With ActiveWorkbook.Worksheets("StatisticalCalculations").sort 
        .SetRange Range("D11:D" & numberx + 10) 
        .Header = xlNo 
        .MatchCase = False 
        .Orientation = xlTopToBottom 
        .SortMethod = xlPinYin 
        .Apply 
    End With 
    Range("A1").Select 
 
'Cooks Distance 
count = 0 
 
Do Until count = numberx 
 
    Worksheets("StatisticalCalculations").Range("F11").Offset(count, 0) = 
(Worksheets("MainCalculations").Range("A1").Offset(5 + count, count_find - 1)) ^ 2 / _ 
    (Worksheets("StatisticalCalculations").Range("G8") * 
Worksheets("StatisticalCalculations").Range("D4")) * _ 
    (Worksheets("StatisticalCalculations").Range("C11").Offset(count, 0) / (1 - 
Worksheets("StatisticalCalculations").Range("C11").Offset(count, 0)) ^ 2) 
     
    count = count + 1 
 
 
Loop 
    Range("G10") = "=Max(F11:F" & numberx + 10 & ")" 
 
 
'P-Value Variables 
 
count = 0 
 
Do Until count = count_beta 
SE_value = (Worksheets("StatisticalCalculations").Range("h2").Offset(count_beta + 2 + 
count, count)) ^ 0.5 
tstat_value = Worksheets("MainCalculations").Range("B2").Offset(0, count) / SE_value 
Worksheets("MainCalculations").Range("B5").Offset(0, count) = _ 
Application.WorksheetFunction.TDist(Abs(tstat_value), 
Worksheets("StatisticalCalculations").Range("C4"), 1) * 2 
 
count = count + 1 
 
Loop 
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count = 0 
 
'Calculate Standardized Beta's 
 
    Sheets("MainCalculations").Select 
    Cells.Select 
    Range("C26").Activate 
    Selection.Copy 
    Sheets("StandardBeta").Select 
    Range("A1").Select 
    ActiveSheet.Paste 
    Range("A1").Select 
    Application.CutCopyMode = False 
    Sheets("StandardBeta").Select 
    Rows("1:5").Select 
    Selection.ClearFormats 
    Range("A1").Select 
    count_h = 0 
     
    Do Until count_h = count_beta - 1 
        count_v = 0 
        Worksheets("MainCalculations").Select 
        Worksheets("MainCalculations").Range("C6").Offset(0, count_h).Select 
        Range(Selection, Selection.End(xlDown)).Select 
        xbar = Application.WorksheetFunction.Average(Selection) 
        stdev_x = Application.WorksheetFunction.StDev(Selection) 
        Worksheets("StandardBeta").Select 
         
            Do Until count_v = numberx 
            Range("C6").Offset(count_v, count_h) = 
(Worksheets("MainCalculations").Range("C6").Offset(count_v, count_h) - xbar) / 
stdev_x 
            count_v = count_v + 1 
            Loop 
     
    count_h = count_h + 1 
    Loop 
 
Call solver_solve 
     
count = 0 
     
    Do Until count = count_beta - 1 
    Range("C3").Offset(0, count) = Abs(Range("C2").Offset(0, count)) 
    count = count + 1 
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    Loop 
     
Range("C3").Select 
Range(Selection, Selection.End(xlToRight)).Select 
Sum_stdBeta = Application.WorksheetFunction.Sum(Selection) 
 
count = 0 
     
    Do Until count = count_beta - 1 
    Range("C4").Offset(0, count) = Abs(Range("C3").Offset(0, count)) / Sum_stdBeta 
    count = count + 1 
    Loop 
     
    Range("C4").Select 
    Range(Selection, Selection.End(xlToRight)).Select 
    Selection.Copy 
    Worksheets("MainCalculations").Select 
    Worksheets("MainCalculations").Range("C4").Select 
    ActiveSheet.Paste 
    Application.CutCopyMode = False 
    Range("A4") = "Standard Beta's" 
     
 
'run solver against squared residuals 
     
    'copy and paste 
    Range("B14").Select 
    Sheets("MainCalculations").Select 
    Cells.Select 
    Selection.Copy 
    Sheets("BPtest").Select 
    Range("A1").Select 
    ActiveSheet.Paste 
    Sheets("MainCalculations").Select 
    Range("D87").Select 
    ActiveWindow.SmallScroll Down:=-48 
    Application.CutCopyMode = False 
    Range("A1").Offset(5, count_find).Select 
    Range(Selection, Selection.End(xlDown)).Select 
    Selection.Copy 
    Sheets("BPtest").Select 
    Range("A6").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
    Range("A1").Select 
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Worksheets("BPtest").Activate 
 
SolverOptions Precision:=0.001 
solver_range = Worksheets("StatisticalCalculations").Range("XFD19") 
SolverOk SetCell:=SSE, MaxMinVal:=2, ValueOf:="0", 
ByChange:=Range(solver_range) 
result = SolverSolve(True, True) 
SolverSolve UserFinish:=True 
 
'Get SSR(resid) and R-sq (resid) 
Worksheets("StatisticalCalculations").Range("f5") = 
Application.WorksheetFunction.DevSq(Worksheets("BPtest").Range("A6:A" & numberx 
+ 5)) _ 
- Worksheets("BPtest").Range(SSE) 
Worksheets("StatisticalCalculations").Range("f4") = 
Worksheets("StatisticalCalculations").Range("f5") / _ 
Application.WorksheetFunction.DevSq(Worksheets("BPtest").Range("A6:A" & numberx 
+ 5)) 
 
'Jaque-Berra test 
Worksheets("StatisticalCalculations").Range("xfd17") = count_find 
Error_range = Worksheets("StatisticalCalculations").Range("xfd18") 
Worksheets("StatisticalCalculations").Range("g6") = "=JB_test(MainCalculations!" & 
Error_range & ")" 
 
'Durbin-Watson test stat 
Worksheets("StatisticalCalculations").Range("E8") = "=sum(B12:B" & numberx + 10 & 
")/B4" 
 
'AD Test 
 
Worksheets("StatisticalCalculations").Range("E6") = "=AD(MainCalculations!" & 
Error_range & ")" 
 
'KS test 
Worksheets("StatisticalCalculations").Range("E7") = 
"=KS(StatisticalCalculations!XFA1:XFA10000,D11:D" & numberx + 10 & ")" 
 
 
Worksheets("MainCalculations").Select 
End Sub 
Public Function JB_test(Normal_test_vals As Range) As Variant 
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Dim Norm_test() As Double 
 
Norm_testR = Normal_test_vals.Value2 
n = UBound(Norm_testR, 1) 
 
ReDim Norm_test(1 To n) 
 
count = 1 
 
Do Until count = n + 1 
Norm_test(count) = Norm_testR(count, 1) 
count = count + 1 
Loop 
 
norm_test_ave = Application.WorksheetFunction.Average(Norm_test) 
 
count = 1 
 
Do Until count = n + 1 
 
s_top = s_top + (Norm_test(count) - norm_test_ave) ^ 3 
s_bottom = s_bottom + (Norm_test(count) - norm_test_ave) ^ 2 
k_top = k_top + (Norm_test(count) - norm_test_ave) ^ 4 
k_bottom = k_bottom + (Norm_test(count) - norm_test_ave) ^ 2 
count = count + 1 
Loop 
 
S = (s_top * 1 / n) / ((s_bottom * 1 / n) ^ (3 / 2)) 
K = (1 / n * k_top) / ((1 / n * k_bottom) ^ 2) - 3 
 
JB_test = n / 6 * (S ^ 2 + 1 / 4 * K ^ 2) 
 
End Function 
 
Public Function KS(Actual As Range, Test As Range) As Variant 
Application.Volatile 
 
Dim ProbAct() As Double 
Dim ProbSim() As Double 
Dim nA As Integer 
Dim nS As Integer 
Dim nLarge As Integer 
Dim Act() As Double 
Dim Sim() As Double 



 

113 
 

 
ActR = Actual.Value2 
SimR = Test.Value2 
 
 
nA = UBound(ActR, 1) 
nS = UBound(SimR, 1) 
ReDim ProbAct(1 To nA) 
ReDim ProbSim(1 To nS) 
ReDim Act(1 To nA) 
ReDim Sim(1 To nS) 
 
If nA > nS Then 
    nLarge = nA 
    Else 
    nLarge = nS 
End If 
 
Do Until nA = count 
    count = count + 1 
    Act(count) = ActR(count, 1) 
Loop 
 
count = 0 
 
Do Until nS = count 
    count = count + 1 
    Sim(count) = SimR(count, 1) 
Loop 
 
count = 0 
 
Do Until count = nLarge + 1 
     count = count + 1 
        If count <= nA Then 
            ProbAct(count) = (count) / (nA) 
        End If 
     
    If count <= nS Then 
    ProbSim(count) = (count) / (nS) 
    End If 
    
Loop 
 
Dim First As Integer 
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Dim Last As Integer 
Dim i As Integer 
Dim j As Integer 
Dim Temp As String 
      
    First = LBound(Sim) 
    Last = UBound(Sim) 
    For i = First To Last - 1 
        For j = i + 1 To Last 
            If Sim(i) > Sim(j) Then 
                Temp = Sim(j) 
                Sim(j) = Sim(i) 
                Sim(i) = Temp 
            End If 
        Next j 
    Next i 
     
        For i = 1 To UBound(Sim) 
            Debug.Print Sim(i) 
        Next i 
        
i = 0 
j = 0 
      
    First = LBound(Act) 
    Last = UBound(Act) 
    For i = First To Last - 1 
        For j = i + 1 To Last 
            If Act(i) > Act(j) Then 
                Temp = Act(j) 
                Act(j) = Act(i) 
                Act(i) = Temp 
            End If 
        Next j 
    Next i 
     
        For i = 1 To UBound(Act) 
            Debug.Print Act(i) 
        Next i 
 
count = 0 
y = 1 
 
Do Until x = nS 
x = x + 1 
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        If Sim(x) < Act(1) Then 
        Do Until Sim(x) > Act(1) 
            D = ProbSim(x) - 0 
            If D > DFinal Then 
                DFinal = D 
            End If 
            x = x + 1 
        Loop 
        End If 
     
        Do Until Sim(x) > Act(y) And Sim(x) < Act(y + 1) Or Sim(x) > Act(nA) 
            y = y + 1 
        Loop 
         
        If Abs(Sim(x) - Act(y)) < Abs(Sim(x) - Act(y + 1)) Then 
            D = Abs(ProbSim(x) - ProbAct(y)) 
                    If D > DFinal Then 
                        DFinal = D 
                    End If 
        Else 
         D = Abs(ProbSim(x) - ProbAct(y + 1)) 
                    If D > DFinal Then 
                        DFinal = D 
                    End If 
         End If 
 
 
 
Loop 
KS = DFinal 
 
End Function 
 
Public Function AD(Normal_test_vals As Range) As Variant 
 
Dim Norm_test() As Double, Prob() As Double 
Dim S_ad As Double 
 
Norm_testR = Normal_test_vals.Value2 
n = UBound(Norm_testR, 1) 
 
ReDim Norm_test(1 To n) 
ReDim Prob(1 To n) 
 
count = 1 
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Do Until count = n + 1 
Norm_test(count) = Norm_testR(count, 1) 
count = count + 1 
Loop 
 
norm_test_ave = Application.WorksheetFunction.Average(Norm_test) 
norm_test_std = Application.WorksheetFunction.StDev(Norm_test) 
 
 
Dim First As Integer 
Dim Last As Integer 
Dim i As Integer 
Dim j As Integer 
Dim Temp As String 
      
    First = LBound(Norm_test) 
    Last = UBound(Norm_test) 
    For i = First To Last - 1 
        For j = i + 1 To Last 
            If Norm_test(i) > Norm_test(j) Then 
                Temp = Norm_test(j) 
                Norm_test(j) = Norm_test(i) 
                Norm_test(i) = Temp 
            End If 
        Next j 
    Next i 
     
        For i = 1 To UBound(Norm_test) 
            Debug.Print Norm_test(i) 
        Next i 
 
count = 1 
 
Do Until count = n + 1 
            Prob(count) = Application.WorksheetFunction.NormDist(Norm_test(count), 
norm_test_ave, norm_test_std, True) 
                 count = count + 1 
Loop 
 
count = 1 
 
Do Until count = n + 1 
    S_ad = S_ad + ((2 * count - 1) / n) * (Log(Prob(count)) + Log(1 - Prob(n - count + 1))) 
    count = count + 1 
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Loop 
 
A_sq = -n - S_ad 
 
AD = A_sq * (1 + 0.75 / n + 2.25 / n ^ 2) 
     
End Function 
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Appendix G: Cooks Distance Plots 
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